
Modular Curve as Moduli Spaces

Kirk Bonney

Overview

The goal of this project is to develop a clear picture of how modular curves form moduli
spaces for elliptic curves with additional torsion data. Along the way, I hope to build a
’compendium’ of facts and perspectives for modular curves that can serve as a useful resource
for myself and others.

1 Motivation

Modular curves are quotients of the upper half space by a subgroup of the full modular
group SL2(Z). These objects are compact Riemann surfaces, which immediately endows
them with topological, differential, and algebraic structure. Relating modular curves to a
problem means we can bring a breadth of mathematics long with it. For number theorists,
modular curves are useful for (at least) two problems: studying modular forms and studying
torsion of elliptic curves. The focus of this paper is the latter.

1.1 Modular Forms (Modularity and Mk(Γ))

The Modularity Theorem is well known for its role in Wiles’ proof of Fermat’s Last Theorem.
A form of its statement can be made using modular curves.

Theorem 1.1. Let E be a complex elliptic curve with j(E) ∈ Q. Then for some positive
integer N there exists a surjective, holomorphic function of compact Riemann surfaces from
the modular curve X0(N) to the elliptic curve E,

X0(N)→ E.

In other words, the theorem states that all elliptic curves with rational invariant can be
parametrized by a modular curve. The typical form of the modularity theorem involves
modular forms, however, recalling that spaces of modular forms are defined, just as modular
curves are, using a congruence subgroup, it might not be surprising that either object can be
used to state the theorem. In fact, modular curves have an important role in understanding
modular forms. The space of modular forms of weight k with respect to the congruence
subgroup Γ is a finite dimensional vector space, denoted Mk(Γ)). The dimension of this
space can be calculated using the genus of the modular curve corresponding to Γ.
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1.2 Elliptic Curves (Mazur’s theorem)

When studying Elliptic Curves over the rational numbers, the structural possibilities for the
torsion subgroup is rather restricted.

Theorem 1.2 (Mazur (1977)). Let E be an elliptic curve.

E(Q)tors ∼= ZN where N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12

or
E(Q)tors ∼= ZN ⊕ ZN where N = 1, 2, 3, 4

This theorem is proven using modular curves. As we will discuss later, modular curves
can be viewed as moduli spaces of elliptic curves with additional torsion data. Then we
can morph questions like ”is it possible for G to arise as a torsion subgroup of an elliptic
curve?” to ”is there a rational point on this modular curve?’ So understanding modular
curves well means understanding torsion of elliptic curves well. Currently, there is a great
deal of research being done on torsion for elliptic curves over other fields such as number
fields using modular curves.

2 Modular Curves

This section will lay out the fundamental definitions and concepts necessary for working with
modular curves. A natural starting point is the modular curve for SL2(Z).

2.1 The modular curve for SL2(Z), briefly

First recall the definition of the full modular group is the set of all integral 2 × 2 matrices
with determinant 1. This group is finitely generated by

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

There is a transitive action1 of SL2(Z) on the upper half plane H defined by

γ · τ =
aτ + b

cτ + d
∀γ ∈ SL2(Z) ∀τ ∈ H.

A fun resource to get acquainted with how this action looks can be found at here.
Via this action, we form a quotient of the upper half plane H/SL2(Z). This quotient

can be made into a Riemann surface with appropriate charts, and a point at infinity can be
added to H to make the Riemann surface compact.

We can construct a fundamental domain for the action of SL2(Z) on H. Define

D := {τ ∈ H : |τ | ≥ 1 and |Re(τ)| ≤ 1/2}.

1This action surjects into the set of isometries for the upper-half plane model of hyperbolic space.
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Figure 1: The fundamental domain D.

Then every point in the upper half plane
is SL2(Z)-equivalent to exactly one point in
D, with the exception of those points equiv-
alent to a point on the boundary of D. The
generator T , mentioned above, gives us the
action τ 7→ τ + 1, so the portion of the
boundary on the line Re(τ) = 1/2 is equiva-
lent to the portion on the line Re(τ) = −1/2.
Further, the generator S gives us the action
τ 7→ − 1

τ
, which identifies the two portions

of the unit circle that are split by the imag-
inary axis. Note that i is not glued to any-
thing else via S, as it is actually fixed by S.
This will be relevant later.

2.2 Congruence subgroups & their
modular curves

By examining subgroups of SL2(Z), we can
form other modular curves.

Definition 2.1. A congruence subgroup of
SL2(Z) is any subgroup which contains the
principal congruence subgroup Γ(N), de-

fined by

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(modN)

}
.

for some N . The lowest such N is called its level.

We will be concerned with three particular families of congruence subgroups. In addition
to Γ(N) we can define

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ?
0 1

)
(modN)

}
and

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
? ?
0 ?

)
(modN)

}
.

Note the containments Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z). For any Γ, there is a natural
map π : Y (Γ)→ Y (SL2(Z)) defined by

π(Γτ) = SL2(Z)τ,

which is well-defined as Γ ⊂ SL2(Z). We can describe much of the structure of Γ using this
mapping.
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For an in-depth introduction to SL2(Z) and its congruence subgroups, we invite the reader
to read this well-written document from Keith Conrad.

Congruence subgroups inherit the action of SL2(Z) on H, so we may form quotients of the
upper half plane as we did before. For any congruence subgroup Γ, we can write Y (Γ) = H/Γ.
We also use the notations Y0(N) = Y (Γ0(N)), Y1(N) = Y (Γ1(N)), and Y (N) = Y (Γ(N))
Note that Γ(1) = SL2(Z), so for concision we write Y (1) for Y (SL2(Z)).

A quotient by a congruence subgroup Y (Γ) can be made into a Riemann surface using
charts, which we refer to as the modular curve for Γ. We will see that we can compactify
this surface, in this case we write X(Γ) = H∗/Γ and generalize the notation from before
to X0(N) = X(Γ0(N)) and so on. The creation of charts for a modular curve is almost
straightforward. With the right lemmas in hand, we can cover most of X(Γ) using the
natural quotient map φ : H → H/Γ. The only difficulty arises at a set of finitely many
problematic points which are characterized by having non-trivial stabilizers in Γ. These
points are important to the understanding of modular curves, so we will spend some time
discussing them. However, we won’t describe how to deal with them while creating charts.
For that we refer the reader to Diamond and Shurman’s book [2]. In particular, we will see
that these points tell us where the natural map π ramifies, which will be for determining the
genus of a modular curve.

Compactification

When we compactify Y (Γ), the added points turn out to be problem points as they come
with non-trivial stabilizers. We’ll look at the process of compactification in detail for SL2(Z),
and see what happens in the more general situation for any Γ.

If we identify Y (SL2(Z)) with its fundamental domain D (Figure 1), then it is easy to see
why it is not compact. As we move up the imaginary axis, we have no accumulation point.
This is why it is necessary to add a point at infinity to the upper-half plane. When we do
this, we can draw a complete picture of our curve in the following way.

• (I) We start with our fundamental domain D.

• (II) When we add ∞, we can image the surface pinching off at the top to represent
the compactification.

• (III) The fundamental domain has redundant points along the boundary. In particular,
the lines with real part equal to ±1/2 must be identified since they are equivalent under
the action τ 7→ τ + 1. There identification is represented by the dashed line.

• (IV) Finally, we have to ’zip up’ the open circle, since two halves of the circle are
identified under the action τ 7→ −1

τ
. This is a bit hard to draw, so the reader is invited

to use their imagination in place of our illustration.

Indeed, modular curves are something our 3D-bound brains can visualize (Figure 2).
Hopefully this illustration makes it clear that our compactified curve is topologically equiva-
lent to the Riemann sphere. However, we have to be careful now that we have added a point
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to H. We have only defined the action of SL2(Z) on H, so for the quotient to make sense we
must extend it to ∞. Take an arbitrary γ ∈ SL2(Z) and let it act on ∞

γ · ∞ =
a · ∞+ b

c · ∞+ d
.

How should we make sense of this? The most straightforward way is to ”take the limit”
and view the quantity as a/c, a rational number. This isn’t actually in the upper-half plane
though, so along with ∞ we must add Q so that the orbit of ∞ under the action is well-
defined. So really what we called H∗ is not just the upper half-plane and infinity; it includes
a copy of Q as well. We write H∗ = H ∪ Q ∪ {∞} and call Q ∪ {∞} the cusps. Since the
orbit SL2(Z)∞ hits all of the added points, we sometimes abuse notation and write it as just
∞.

Figure 2: Visualization of the compactification
of Y (SL2(Z)).

When we look at a subgroup Γ, the cusps
no longer lives in a single orbit.

Example 2.1. Consider Γ(2). Then the ac-
tion of this subgroup cannot carry ∞ to 2.
Suppose it could,

a · ∞+ b

c · ∞+ d
= a/c = 2.

This implies that a = 2 and c = 1, since the
two are coprime, but the conditions of Γ(2)
mean that a ≡ 1 mod (2) and c ≡ 0 mod
(2), a contradiction.

The moral is that as Γ becomes smaller2,
its action becomes more restricted and we
obtain more distinct orbits among Q ∪∞.

Definition 2.2. A point Γτ of X(Γ) is said
to be a cusp for X(Γ) if its image under
the natural map π : X(Γ) → X(SL2(Z)) is
SL2(Z)∞.

In other words, Γτ is a cusp of X(Γ) if it contains rational numbers and possibly ∞.
At the beginning of the section, it was claimed that cusps have non-trivial stabilizer.

Before proceeding any further, let’s make clear what is meant by this.

Definition 2.3. We write the stabilizer of τ ∈ H∗ in Γ to be the set

Γτ := {γ ∈ Γ | γ · τ = τ}.

In particular, if the contaiment {±I}Γτ ⊂ {±I} is proper, we say the stabilizer Γτ is non-
trivial.

2We interpret small as having a large index in SL2(Z).
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Example 2.2. Certainly when Γ = SL2(Z), we have that ∞ is stabilized by all of 〈T 〉 as
∞ + n is equal to ∞ for any n ∈ Z. Now suppose that Γ is not SL2(Z) and has level N .

Then the matrix A =

(
1 N
0 1

)
belongs to Γ3. Since the stabilizer Γ∞ is just equal to

SL2(Z)∞ ∩ Γ, it follows that it is non-empty as A ∈ SL2(Z)∞ and A ∈ Γ.

Cusps are a necessary addition to modular curves because they turn these objects into
compact Riemann surfaces, the theory of which is very useful. Once we give similar exposition
for elliptic points, we will be prepared to understand the ramification of the natural map π,
and with the help of the Riemann-Hurwitz theorem, we can calculate the genus of X(Γ).

Elliptic Points

Elliptic points are the non-cuspoidal troublemakers.

Definition 2.4. Let Γ be a congruence subgroup. Then τ is an elliptic point for Γ if Γτ

That is, they are the points in H which have non-trivial stabilizers under the action of
Γ. As in the case of cusps, it will be easiest to understand the elliptic points for SL2(Z)
before approaching the general case. Suppose we have a point τ ∈ H which is fixed by some
γ ∈ SL2(Z) where γ 6= ±I. Then

γ · τ =
aτ + b

cτ + d
= τ

implies that τ is the root of an integral quadratic

cτ 2 + (d− a)τ − b = 0.

Applying the quadratic equation and keeping in mind that τ lives in the upper halfplane,
we see that √

(d− a)2 + 4cb =⇒ |a+ d| < 2.

Further, if we require that τ be in our fundamental domain D we can show that our possible
quadratics are x2 + 1 or x2 ± x + 1. Thus, τ must either be i or µ3 = e2πi/3. Note, the
conjugate root for the first polynomial is not in H, and the conjugate root for the second
polynomial is in fact SL2(Z) equivalent to µ6, so it is safe to ignore them. From here one
can prove the following.

Proposition 2.1. [2] The elliptic points of the modular curve for SL2(Z) are SL2(Z)i, with
isotropy subgroup

SL2(Z)i =

〈[
0 −1
1 0

]〉
and τ = µ3 with isotropy subgroup

SL2(Z)µ3 =

〈[
0 1
−1 −1

]〉
.

3This fact is why modular forms for congruence subgroups have Fourier expansions.
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To move forward into general territory, the following result is key.

Proposition 2.2. [2] Let Γ be a congruence subgroup of SL2(Z). The modular curve Y (Γ)
has finitely many elliptic points. For each elliptic point τ of Γ the isotropy subgroup Γτ is
finite cyclic.

Proof. It is a fact that congruence subgroups have finite index inside of SL2(Z), so for any
Γ we may write as a disjoint union

SL2(Z) =
d⋃
j=1

Γγj.

Clearly, if a point of Γ has non-trivial stabilizer in Γ, then the same is true for the image
of that point under the natural map π : X(Γ) → X(SL2(Z)). When we move backwards
through π, a point in X(SL2(Z)) splits into d points of X(Γ). With the description of SL2(Z)
above, we can describe these explicitly. A point SL2(Z)τ has the following pre-image under
π

π−1(SL2(Z)τ) = {Γγj(τ) | 1 ≤ j ≤ d}.
It follows that all elliptic points for X(Γ) must be in the pre-image of either i or µ3. Ad-
ditionally, the stabilizer Γτ of an elliptic point is a conjugate to a subgroup of SL2(Z)i or
SL2(Z)µ3 , both of which are cyclic.

It is important to note that the converse is not true; every point in the pre-image of an
elliptic point for X(SL2(Z)) is not necessarily a elliptic point for X(Γ). Fortunately still, we
know what points to check and that there are finitely many of them. The statement holds
analogously for cusps. Using the strategy laid out in the proof, let’s work an example for
finding both the cusps and elliptic points for Γ(2).

Example 2.3. Our first step will be finding coset representatives for Γ(2) in SL2(Z). Using
SAGE, we can find that the index of Γ(2) in SL2(Z) is 6. From here, we find by hands-on
calculation that

γ1 =

[
1 0
0 1

]
, γ2 =

[
0 1
−1 0

]
, γ3 =

[
1 1
0 1

]
, γ4 =

[
0 1
−1 −1

]
, γ5 =

[
−1 0
−1 −1

]
, γ6 =

[
−1 −1
1 0

]
is a complete collection of representatives for the cosets. Next we use these to find the inverse
images of our three distinguished points: i and µ3 for elliptic points, and ∞ for the cusps.
We have that

π−1(SL2(Z)i) = {Γγj(i) | 1 ≤ j ≤ 6} = {Γ(2)i,Γ(2)1 + i,Γ(2)− 1/2 + 1/2i}.
Note that the stabilizer of i intersects trivially with Γ(2), therefor none of the above points
are elliptic. The same is true for the stabilizer of µ3. In this case we have that none of

π−1(SL2(Z)µ3) = {Γγj(µ3) | 1 ≤ j ≤ 6} = {Γ(2)µ3,Γ(2)µ3 + 1,Γ(2)
1√
3
e

5πi
6 }.

are elliptic. Finally, the cusps are given by

π−1(SL2(Z)∞) = {Γγj(∞) | 1 ≤ j ≤ 6} = {Γ(2)∞,Γ(2)0,Γ(2)1}.
In each case we have a collapsing of the pre-image down from the expected six points. This
is the mark of ramification and demonstrates why elliptic points and cusps are important to
study when understanding a map between modular curves.
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2.3 Genus formula

Our discussion of cusps and elliptic points have set us up to give an explicit formula for
the genus of a modular curve X(Γ) as a Riemann surface. This formula is built from the
Riemann-Hurwitz formula, which describes the relationship of the genus of two Riemann
surfaces given by a map between the two. Before we jump into these formulas, we will
establish some concepts concerning maps between Riemann surfaces.

Definition 2.5. Let X and Y be Riemann surfaces, and let f : X → Y be a complex analytic
mapping between the two. Near each point z0 of the domain we can choose a chart centered
at z0 so that, locally, f(z) = zn for some n. We denote this quantity by multz0(f) = n.
When n > 1, we say that the point is ramified and that the ramification degree of π at z0

is ez0 = n.

Note that it is not immediate that the charts mentioned can be found, but they do indeed
exist. It is useful to view zn as the model for ramification, so we use the flexibility of the
chart structure to mold our local perspective into this model. Doing so captures special
behavoir of the function at a ramified point z0. Here, the function looks like an n-to-one
mapping in a deleted neighborhood of z0, since non-zero values have a pre-image of size n
under zn. At z0, however, the function is 1-1.

Before stating the Riemann-Hurwitz formula, we need to define one last quantity.

Definition 2.6. [4] It is a theorem that the quantity

dy(f) =
∑

p∈f−1(y)

multp(f)

does not depend on y, and thus is a characteristic of the function. We call this quantity the
degree of f .

Now we state the main tool used to calculate the genus.

Theorem 2.1. (The Riemann-Hurwitz Formula)4

Let X and Y be compact Riemann surfaces, and let f : X → Y be a nonconstant holo-
morphic map of degree d. Then

2gX − 2 = d(2gY − 2) +
∑
x∈X

(ex − 1)

where ex is the ramification index of x.

Two immediate corollaries are that there is no non-constant holomorphic map to a surface
of higher genus and a non-constant map between surfaces of equal genus g ≥ 1 is unramified.
We will apply this to the specific case where X = X(Γ) and Y = X(SL2(Z)) and f = π
is the natural map. Since we know that the genus of X(SL2(Z)) is zero, all we must do is
understand the degree and ramification of the natural map to be able to calculate the genus
of X(Γ). The follow lemma describes the ramification of π, and is a key piece of the genus
formula.

4I have been told there are a couple dozen different proofs of this theorem.

8



Lemma 2.1. Let Γ be a congruence subgroup, and let π : X(Γ)→ X(SL2(Z)) be the natural
map.

1. Let τ ∈ H. Define h = |SL2(Z)τ |/2. Then the ramification degree for a point τ is given
by

eτ =

{
h if τ is an elliptic point for SL2(Z) but not for Γ

1 o.w.

2. Let τ ∈ Q ∪ {∞}. Then the ramification for τ is given by

eτ = [SL2(Z)τ : {±I}Γτ ],

the index of the stabilizer of τ in Γ with the trivial action accounted for in the stabilizer
of τ in SL2(Z).

To avoid giving a full description of the chart structure on modular curves, we omit the
proof of this lemma. The punchline of the theorem is that all ramification for π happens at
the cusps and elliptic curves. Let’s apply this in our pursuit of the genus formula.

Theorem 2.2. (Genus Formula for Modular Curves)
Let Γ be a congruence subgroup of SL2(Z) and let d be the degree of the natural map

X(Γ) → X(1). Let ε2 denote the number of elliptic points of period 2, ε3 the number of
elliptic points of period 3, and ε∞ the number of cusps of Γ (i.e., the number of orbits of Γ
on Q ∪ {∞}. Then then genus G of X(Γ) is

G = 1 +
d

12
− ε2

4
− ε3

3
− ε∞

2

Proof. Plugging our scenario into Riemann-Hurwitz gives us

2− 2G = 2d−
∑

x∈X(Γ)

(ex − 1).

Since we know that ramification only happens at the cusps and elliptic points, we can write∑
x∈X(Γ)

=
∑

x∈π−1(i)

ex − 1 +
∑

x∈π−1(µ3)

ex − 1 +
∑

x∈π−1(∞)

ex − 1.

Next we address each sum individually. Consider the points living above i. Those which
are elliptic will not ramify, so they do not contribute to the sum. Write ε2 for the number
of points which are elliptic in X(Γ). Those which are not elliptic, do ramify with degree 2
(Prop 2.1 & Lemma 2.1). Recalling that d is the number of points in π−1(i) counted with
multiplicity, it follows that the number of ramified points is (d− ε2)/2 and that∑

x∈π−1(i)

ex − 1 = (d− ε2)/2.
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Now consider the points living above µ3. Those which are elliptic will not ramify, so they
do not contribute to the sum. Write ε3 for the number of points which are elliptic in X(Γ).
Those which are not elliptic, do ramify with degree 3 (Prop 2.1 & Lemma 2.1). As before,
we can calculate that the number of ramified points is (d− ε3)/3 and that∑

x∈π−1(µ3)

ex − 1 = 2(d− ε2)/3.

Finally, we examine the points above∞. Here we don’t have a distinction of cusps versus
non-cusps; everything in π−1(∞) is a cusp by definition. Write ε∞ for the number of cusps
in X(Γ). Then we have ∑

x∈π−1(∞)

ex − 1 = d− ε∞.

Putting this all together, we have

2− 2G = 2d− d− ε2
2
− 2(d− ε3)

3
− d+ ε∞.

To see this formula in action, we will continue with our example of Γ(2).

Example 2.4. We know from before that the degree of the natural map π : X(2) → X(1)
is 6. We also know that the pre-image of i has 3 elements, none of which were elliptic. The
same is true for µ3. The number of cusps is 3. We apply the formula.

G = 1 +
6

12
− 0

4
− 0

3
− 3

2
= 0.

So we have successfully calculated that the genus of X(2) is 0.

Using the fareysymbol package from SAGE, we can print out a visual for a fundamental
domain of Γ(2). We leave it as an exercise to visualize how this pastes together to the
Riemann sphere. We’ll end the discussion on the genus of modular curves with a more
general result.

Example 2.5. We can find the genus of X1(N) where N is a prime greater than 3. In this
case, one can prove that the degree of π is N2−1

2
, there are no elliptic points in X1(N), and

that there are N − 1 cusps. Hence the genus is

G =
(N − 7)(N + 1)

12
.
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Figure 3: A fundamental domain for Γ(2).

3 Modular Curves as Moduli Spaces

Now that we have become acquainted with some of the fundamental features of modular
curves, we will take a look at how modular curves can be used in the study of elliptic curves.
In particular, we will see that modular curves serve as moduli spaces for elliptic curves with
attached torsion data. Typical definitions of moduli spaces involve a general perspective
situated in the language of category theory. We won’t need this for our purposes. Instead it
will suffice to define a moduli space for a set of geometric objects P to be a some geometric
object X whose points are in bijective correspondence with P .

In our case, P will be elliptic curves under various kinds of isomorphism involving torsion
and X will a modular curve X(Γ). To prepare ourselves for this point of view, let’s first
examine the simple case where Γ = SL2(Z). Recall that an elliptic curve E may be identified
with a point τ in the upper-half plane by viewing it as the torus C/Λτ , where Λτ is the
Z-lattice generated by 1 and τ . There are many possible τ for a fixed E, so the map φ
taking τ to its corresponding elliptic is surjective, but not injective. To make it injective,
the right thing to do is to mod out by the action of SL2(Z) on H because τ and τ ′ give the
same elliptic curve if and only if they are SL2(Z) equivalent. Then, writing S as the set of
elliptic curves under typical isomorphism,

φ′ : H/SL2(Z)→ S

is a bijection. Therefor, we can call Y (SL2(Z)) a moduli space for S.
To expand this approach to the rest of the congruence subgroups we are familiar with,

Γ0(N),Γ1(N),Γ(N), we must describe different kinds of equivalence classes of elliptic curves.

Definition 3.1. [2] An enhanced elliptic curve for Γ0(N) is an ordered pair (E,C) where
E is a complex elliptic curve and C is a cyclic subgroup of E with order N . Two enhanced
elliptic curves for Γ0(N), (E,C) and (E ′, C ′) are said to be isomorphic if there exists an
isomorphism f : E → E ′ such that f(C) = C ′. The set of equivalence classes is denoted

S0(N) = {enhanced elliptic curves for Γ0(N)}/ ∼ .
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An enhanced elliptic curve for Γ1(N) is an ordered pair (E,Q) where E is a complex
elliptic curve and Q is a point of E with order N . Two enhanced elliptic curves for Γ1(N),
(E,Q) and (E ′, Q′) are said to be isomorphic if there exists an isomorphism f : E → E ′ such
that f(Q) = Q′. The set of equivalence classes is denoted

S1(N) = {enhanced elliptic curves for Γ1(N)}/ ∼ .

An enhanced elliptic curve for Γ(N) is an ordered pair (E, (P,Q)) where E is a
complex elliptic curve and (P,Q) is a pair of points of E which generate the torsion subgroup
E[N ]. Two enhanced elliptic curves for Γ(N), (E, (P,Q)) and (E ′, (P ′, Q′)) are said to be
isomorphic if there exists an isomorphism f : E → E ′ such that f(P ) = P ′ and f(Q) = Q′.
The set of equivalence classes is denoted

S(N) = {enhanced elliptic curves for Γ(N)}/ ∼ .

The more restrictions we put on Γ, the more information its corresponding set of elliptic
curves will contain. Note that S(N) surjects to S1(N) by forgetting the second generator,
S1(N) surjects to S0(N) by taking the cyclic subgroup generated by the specific point, and
that S0(N) surjects to S by forgetting the torsion data entirely. This reflects the natural
maps we have between the congruence subgroups.

The key statement is that the modular curve Y (Γ) is a moduli space for the set of enhanced
elliptic curves for Γ. We state this formally while also giving explicit descriptions of the sets
of enhanced elliptic curves. In what follows, we write Eτ to mean C/Λτ .

Theorem 3.1. [2]

(a) We can describe the enhanced elliptic curves for Γ0(N) by

S0(N) = {(Eτ , 〈1/N + Λτ 〉) | τ ∈ H}.

Two points (Eτ , 〈1/N + Λτ 〉) and (Eτ ′ , 〈1/N + Λτ ′〉) are equal if and only if Γ0(N)τ =
Γ0(N)τ ′. So there exists a bijection

ψ0 : S0(N)→ Y0(N), (Eτ , 〈1/N + Λτ 〉) 7→ Γ0(N)τ

(b) We can describe the enhanced elliptic curves for Γ1(N) by

S1(N) = {(Eτ , 1/N + Λτ ) | τ ∈ H}.

Two points (Eτ , 1/N+Λτ ) and (Eτ ′ , 1/N+Λτ ′) are equal if and only if Γ1τ = Γ1(N)τ ′.
So there exists a bijection

ψ1 : S1(N)→ Y1(N), (Eτ , 1/N + Λτ ) 7→ Γ1(N)τ

(c) We can describe the enhanced elliptic curves for Γ(N) by

S(N) = {(Eτ , (τ/N + Λτ , 1/N + Λτ )) | τ ∈ H}.

Two points (Eτ , (τ/N + Λτ , 1/N + Λτ )) and (Eτ ′ , (τ
′/N + Λτ ′ , 1/N + Λτ ′)) are equal if

and only if Γ(N)τ = Γ(N)τ ′. So there exists a bijection

ψ : S(N)→ Y (N), (Eτ , (τ/N + Λτ , 1/N + Λτ )) 7→ Γ(N)τ

12



Proof. We will prove part (a) of the theorem. Essentially, what we must show is that the
additional torsion information carried within S0(N) is exactly the information preserved by
the action of Γ0(N), and that for any point in S0(N) we may choose a representative of the
form (Eτ , 〈1/N + Λτ 〉).

First we’ll find the distinguished representative for an arbitrary point (E,C) ∈ S0(N).
We know that E is isomorphic to Eτ ′ for some τ ′ ∈ H, so we may assume WLOG that
E = Eτ ′ . Let k be a generator for C. Then we know k will take the form

K =
c

N
τ ′ +

d

N
+ Λτ ′

where gcd(c, d,N) = 1, since k must have order N . Then we can find an a and b so that

ad− bc− lN = 1

for some l so that the matrix γ =

[
a b
c d

]
is in SL2(Z/NZ). We may modify the entries as we

please modulo N without changing K as defined. So we can assume that γ ∈ SL2(Z), since
SL2(Z) naturally maps onto SL2(Z/NZ). Defining τ = γ · τ ′ and m = cτ ′+d 5 one can check
that mΛτ = Λτ ′ , which implies Eτ ∼= Eτ ′ . Further, m (1/N + Λτ ) = c

N
τ ′ + d

N
+ Λτ ′ = Q.

Thus, in S0(N), (E, 〈K〉) ∼= (Eτ , 〈1/N + Λτ 〉).
It is worth noting that the above argument made no special reference to Γ0(N), so we can

use the same line of reasoning to find the distinguished representatives in the other cases.
In fact, what was proved is the choice of representative for part (b), which was immediately
applied to prove it also for (a). Now we proceed to show that the bijection holds.

Suppose τ, τ ′ ∈ H satisfy Γ0(N)τ = Γ0(N)τ ′. We can write γ · τ ′ = τ for some γ =[
a b
c d

]
∈ Γ0(N). As before define m = cτ ′ + d. Then mΛτ = Λτ ′ and

m (1/N + Λτ ) = cτ ′/N + d/N + Λτ ′ .

Here is where Γ0(N) becomes relevant. We have assumed that c ≡ 0 mod N , so then the
above expression is equal to d/N+Λτ ′ . A consequence of γ ∈ Γ0(N) is that gcd(d,N) = 1, so
it follows that d/N + Λτ ′ has order N , thus it generates the same cyclic group as 1/N + Λτ ′.
So then the homothety given by m gives an isomorphism for the enhanced elliptic curves
(Eτ , 〈1/N + Λτ 〉) and (Eτ ′ , 〈1/N + Λτ ′〉).

Lastly, suppose that (Eτ , 〈1/N + Λτ 〉) and (Eτ ′ , 〈1/N + Λτ ′〉). Then we have some ho-
mothety m such that mΛτ = Λτ ′ and m〈1/N + Λτ 〉 = 〈1/N + Λτ ′〉. Further, since Eτ and

Eτ ′ must be isomorphic, we have some γ =

[
a b
c d

]
∈ SL2(Z) such that γ · τ ′ = τ . Then the

correspondence between homothety and SL2(Z)-equivalence tells us that m = cτ ′ + d. As
before, we know that

m (1/N + Λτ ) = cτ ′/N + d/N + Λτ ′ .

However we know that m(1/N + Λτ ) = k/N + Λτ ′ for some k with gcd(k,N) = 1, since
m(1/N + Λτ ) generates 〈1/N + Λτ ′〉. Thus it follows that c ≡ 0 mod N and k = d, proving
that γ ∈ Γ0(N).

5I like to think of this m as the SL2(Z) equivalence of τ and τ ′ translated to the world of lattices, since
m gives a homothety between Λτ and Λτ ′ .
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4 Modular Curves as Tools

Consider Mazur’s theorem on the structure of torsion subgroups of elliptic curves over Q.

Theorem 4.1 (Mazur (1977)). Let E be an elliptic curve.

E(Q)tors ∼= ZN where N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12

or
E(Q)tors ∼= ZN ⊕ ZN where N = 1, 2, 3, 4

Using the machinery we have built up, we can immediately rephrase this question in terms
of modular curves. Recall that the curve Y0(N) is a moduli space for elliptic curves with
a specified cyclic subgroup of size N . It turns out that modular curves are also algebraic,
so we can ask about rational points on Y0(N). Such points (E,C) are those where E is
defined over Q and C ⊂ E(Q). Now a portion of Mazur’s theorem can be rephrased to the
non-existence of a rational point on Y0(N) where N is a prime greater than 7. The following
theorem provides a key step towards proving this statement.

Theorem 4.2. [6] Suppose N > 7 and there exists an Abelain variety A/Q and a map of
varieties f : X0(N)→ A defined over Q such that the following hold

• A has good reduction away from N .

• f(0) 6= f(∞).

• A(Q) has rank 0.

Then there is no elliptic curve defined over Q which has a point of order N .

So the challenge is finding such an A. One ends up realizing A as a quotient of the
Jacobian of X0(N). This path requires one to reach deep into the modular forms side of the
theory of modular curves. We won’t delve far in this direction, but we’ll give some definitions
to give the flavor of the kind of tools used in this approach.

Definition 4.1. The Jacobian of a compact Riemann surface X is the quotient group

Jac(X) = Ω1
hol(X)∧/H1(X,Z)

where Ω1
hol(X)∧ is the dual of the set of holomorphic one forms on X and H1(X,Z) is the

first homology group of X.

The Jacobian of X can also be realized using the theory of divisors. One can understand
Jac(X) as a pointed, universal Abelian variety which X maps through. In the proof of
Mazur’s theorem, the Jacobian is used to construct the A mentioned in Theorem 4.2. To do
so, one also utilizes the Hecke Algebra for Γ0(N).
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Definition 4.2. [3] Let n be a positive integer and let M be the set of integral matrices with
determinant n. Let f be a modular form for SL2(Z) of weight k. Define the Hecke operator
Tn to be

(Tnf)(z) := nk−1
∑

µ∈M/SL2(Z)

f |[µ]k

where

(f |[γ]k)(z) = (cz − d)kf

(
az + b

cz + d

)
for γ =

[
a b
c d

]
and z ∈ H.

Clearly, there is a lot more going on here than we have covered. What we can say for
now is that the Hecke operators are linear operators on modular forms. We have defined
them for SL2(Z), but they can be defined for congruence subgroups as well. In each of these
cases, one can show that these linear operators form an algebra, given a fixed Γ. Within
this algebra, one seeks out a particular ideal and uses this to form the desired quotient A of
Jac(X0(N)).

5 Conclusion

We have explored quotients of the upper-half plane by the action of congruence subgroups
H/Γ. We call such a space a modular curve Y (Γ), which can be endowed with the structure
of Riemann surface. This brings about the study of cusps (to compactify) and elliptic points
(to build the complex atlas). These distinguished points also play an important role in
determining the genus of our now compact Riemann surface X(Γ).

After establishing these basic properties of the curve, we finished the discussion on mod-
ular curves by surveying their role in Mazur’s theorem. There we saw that modular curves
are effective in solving number-theoretic problems over Q; it turns out that we can generalize
them over cyclotomic and number fields to extract results for elliptic curves over these fields.
We focused our attention on modular curves in relation to elliptic curves, but they have
widespread application, showing up in the study of modular forms as well as having a large
role in the monstrous moonshine conjectures.
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