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1 Project Overview

The aim of this project is to investigate and understand the Levi-Civita connection. We
motivate this exploration in two ways. The first is by viewing the Levi-Civita as a necessary
component for the generalization of curvature to manifolds. The other will focus on a
simpler geometric concept - the straight line. We will demonstrate two different methods of
generalizing the straight line to manifolds; it will turn out that the Levi-Civita connection
is the natural way to reconcile these two points of view. Finally, we will end by stating the
Fundamental Theorem of Riemannian Geometry, the theorem guaranteeing the existence
and uniqueness of the Levi-Civita connection.

2 Curvature

To motivate the Levi-Civita connection and its relation to curvature, let’s begin by reminding
ourselves of some of the more basic perspectives on curvature. A definition of curvature given
in a course on multi-variable calculus might look like the following:

Given a smooth, regular curve ~γ(t) : R→ R3 (i.e. one such that ~γ′(t) is continuous and
~γ′(t) 6= 0) we define curvature to be

κ =

∥∥∥∥∥ ~T ′(t)~γ′(t)

∥∥∥∥∥
Where ~T denotes the unit tangent vector. Typically we assume that |~γ′(t)| = 1 since we can
divide by ‖~γ′(t)‖, a quantity we required to be non-zero. With this assumption in mind, it

follows that ~T = ~γ′. Hence, the formula above can be reduced to

κ = ‖γ′′(t)‖ .

At a particular point p on a smooth plane curve, we can find circles which are tangent to
the curve at p. If we further require that the circles have the same velocity and acceleration
vectors as the curve at p, we have a unique choice called the osculating circle (fun fact:
osculating is a synonym for kissing). One can generalize this idea to space curves and
osculating spheres with the appropriate details. This point of view encapsulates the historical
approach to curvature taken by Oresme and Cauchy. We can relate this to the derivative
approach to curvature in the following equation

κ =
1

R
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where κ is the curvature at a point, and R is the radius of the osculating circle at a point. It
is worth noting that we can define an orientation of curvature to give us a notion of signed
curvature. The idea being that curving ‘inwards’ is positive, and curving ‘away’ is negative.

In the grand scheme of smooth manifolds, we have kept things relatively simple here. We
have only concerned ourselves with one-dimensional manifolds embedded in low-dimensional
Euclidean space. What we gain from these tight restrictions is a very simple description of
curvature: a single positive real number associated to each point on the curve. A natural
question to ask about this definition of curvature is whether or not it is ‘intrinsic’ to the
curve - that is, does a curve know about its curvature without reference to an embedding.
The answer is no for any 1-dimensional manifold. To contrast this, we’ll take a look at the
curvature of surfaces. There we will see that one step up in dimension will already make
things more complicated, however, thanks to Gauss, we will be able to define an embedding-
independent (intrinsic) notion of curvature.

To get ourselves started, we’ll consider two surfaces, S and R embedded in R3. For now
focus on the 2-sphere S. We would like to come up with some notion of curvature on S at
the distinguished point p. Since we already have curvature for curves established, it would
be nice if we could leverage that theory here. So we would like to think about curves in S
passing through the point p. We can obtain a family of such curves by considering planes
containing the unit normal vector at p to S. The intersection of one of these planes with S
gives us a curve in R3, something we can calculate the the curvature for. The case of the
sphere is convenient since the curvature of each of these curves is the same (the osculating
sphere for each curve is just S). It would be fair to define the curvature of S at p to be the
shared curvature of the curves we defined. However, what we actually do is something a bit
different. Examining R will enlighten us to why.

2



We proceed with the same strategy for the curvature of R at q. Those with keen visu-
alization ability will quickly note that as we rotate our intersecting plane about the normal
vector, we get drastically different curves. Along one plane we obtain a straight line, whereas
the perpendicular plane gives us a parabola. These will certainly give us different curvatures,
so we can’t proceed as we did with S. Since the curvatures vary, it would be natural to think
about the minimum and maximum of the set of curvatures. This is certainly well-defined
for a fixed embedding, and the pair of values are known as the principal curvatures of R at
q. However, this is not quite enough to give us something intrinsic.

The right thing to define is due to Gauss and his Theorema Egregium which demonstrates
that the product of the principal curvatures is an intrinsic property of a 2-dimensional
manifold. This value is called the Gaussian curvature. Consider the fact that R may be
diffeomorphically deformed into a flat surface. Then the intrinsic curvature of the plane and
R should be identical. R will have 0 either as a min or max of its curvatures at q, depending
on the orientation chosen to sign the curvature, since the straight line is one of the possible
curves. Therefor, the Gaussian curvature of R at q must be 0. This is the case for the plane,
as its only curves obtained from normal, intersecting planes are lines.

In the following sections, we will take a tour through a collection of concepts from Rie-
mannian geometry so that we may state and understand the Levi-Civita connection. From
this perspective, one can define sectional curvature for a Riemannian manifold. Gaussian
curvature depends only on the Riemannian metric, which in our examples were endowed on
our manifolds by the embedding.

3 A Starting Point for Geometry

Our goal is to start making sense of geometric notions on a general manifold, i.e. one which
is not embedded in Rn. However, a manifold alone doesn’t have much more shape to it
than the underlying topological space. The atlas guarantees smoothness, but the manifold
is essentially formless. To convince yourself that an ordinary manifold really can’t have an
inherent notion of geometry, recall that half of S2 is diffeomorphic to an open set of R2, but
the two manifolds have very different geometries. For example, triangles on a sphere have a
total angle sum greater than π.
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One of the most straightforward ways to give our manifolds shape is with a Riemannian
metric. This is how we turn Rn into the familiar realm of Euclidean geometry. Recall the
usual Euclidean inner product is given by

〈x, y〉 =
∑

xiyi

from which we can derive the Euclidean metric d(x, y) =
√
〈x− y, x− y〉. The tangent

spaces of Rn inherit this inner product since we can identify them with Rn. However, this
luxury does not extend to manifolds in general. This problem leads us to define a Riemannian
metric.

Definition 3.1 (Lee). A Riemannian metric on a manifold M is a smooth, covariant
2-tensor field g, whose value gp at each p ∈M is an inner product on TpM .

For example, we can define a Riemannian metric on Rn by setting gp = 〈·, ·〉. Once we
equip a manifold with a Riemannian metric (from now on, we’ll simply call it a metric), we
immediately obtain a notion of distance and angles for our tangent spaces - a great start
for geometry on manifolds. Conveniently, it is a fact that all manifolds can admit a metric.
As we will shortly see in an example, there is a straightforward way to form a metric on an
embedded manifold. We can combine this method with the Whitney embedding to convince
ourselves of the aforementioned fact, though there are ways to prove it without needing such
a powerful theorem.

Example 3.1. Given an embedded manifold f : M → Rn, we can pull back the metric r(·, ·)
on Rn to the manifold, endowing M with the metric

gp(x, y) = (f ∗r)p(x, y) = rf(p)(df(x), df(y)).

In the particular case of ι : S1 → R2, the inherited metric is really just the restriction of the
metric on R2 to TpS

1 at each point p. In symbols,

gp(x, y) = (ι∗r)p(x, y) = rι(p)(dι(x), dι(y)) = rp(x, y).

This example generalizes in a straightforward way to an immersion f : M → N when N
is already a Riemannian manifold. We can build new metrics from old ones using products
and submersions as well, but instead of going into details on these, let’s look at an explicit
way we can pull geometry out of Riemannian manifold.

Definition 3.2. [3] Let (M, g) be a Riemannian manifold. For a smooth curve γ : [a, b]→M
we define its length

Lg(γ) =

∫ b

a

√
〈γ′(t), γ′(t)〉gdt.

We can then define the g-distance on M between two points x, y ∈ M to be the greatest
lower bound of the set {Lg(γ) | γ(a) = x, γ(b) = y}.

What does this look like on Rn with the usual metric? Hopefully, there aren’t any
surprises.
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Example 3.2. Let γ : [a, b]→ R2 be a smooth curve and write γ(t) = (γ1(t), γ2(t)). Then

Lg(γ) =

∫ b

a

√
〈γ′(t), γ′(t)〉gdt

=

∫ b

a

√
〈(γ′1(t), γ′2(t)), (γ′1(t), γ′2(t))〉gdt

=

∫ b

a

√
γ′1(t)

2 + γ′2(t)
2
gdt.

This is exactly how we define the length of a curve in calculus, so we’ve given ourselves
a proper generalization of length. With this in hand, we can generalize lines to Riemannian
manifolds by requiring a line between two points to be a curve with length equal to the
g-distance between the points. We will explore this concept in further detail in the next
section and answer questions like ‘is such a curve unique?’

4 Generalizing the straight line without a metric

In this section we will approach the problem of generalizing the straight line of Euclidean
space from a different point of view. We will not start with a Riemannian manifold, but
instead use a covariant derivative to allow us to generalize the zero-acceleration property
of ax + b. Covariant derivatives are obtained from an affine connection, and we will give
rigorous definitions for both. However, let’s first justify why we need a covariant derivative:
what does it give us, and why can’t we proceed without it?

Recall the discussion of elementary curvature in the first section. There we indicated
that curvature in Rn can be realized as the magnitude of an acceleration vector. If we want
to generalize this formulation of curvature, we certainly need a way to obtain acceleration
vectors on an arbitrary manifold. Let’s try.

As usual, a first attempt at naive generalization follows from trying what works in Rn

on an arbitrary manifold. Given a curve γ(t), what we do in Rn to obtain γ′′(t) is to simply
differentiate γ′(t). Up until manifold theory, a student might think of γ′(t) as another
function with values in Rn, so really it is no problem to differentiate it. However, for our
purposes, it will be better to view γ(t) as a vector field along a curve, γ′(t) : [a, b] → TM .
In Euclidean space we derive one vector field with respect to another in the following way

(∇XY )(p) := lim
t→0

Y (p+ tX(p))− Y (p)

t
.

This works because of our natural identification of each tangent space with Rn, so we can
make sense of the quantities p+ tX(p) and Y (p+ tX(p))−Y (p), despite their terms living in
different worlds. However, we don’t have such an identification in general, so these quantities
are going to cause us trouble. The first can be remedied using flows similar to what one does
in the case of the Lie derivative. In other words, we can write p + tX(p) as φt(p) where φt
is the local flow of X. When building the Lie derivative, the second problem is also solved
with flows, but we are not going to do that. To see why, recall from section 3 that we can’t
have a reliable notion of geometry on a manifold since diffeomorphisms won’t preserve them.
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So if we try to build a geometry without introducing something new, we are doomed to
fail. Furthermore, the Lie derivative can’t be thought of as a proper generalization of the
∇ defined above in terms of basic properties. As we’ll see in the coming definition, ∇ is
C∞-linear in the first argument, but this is not true for the Lie derivative.

The moral is that we need something else to get our geometry off the ground. A connec-
tion turns out to be the framework for the task. As we’ll see, a connection lets us directly
define a ∇ that works like the one for Rn in other manifolds without mucking about in
technical details too much (unless you want to: see connection coefficients).

Definition 4.1. [4]
Let π : E → M be a smooth vector bundle over a smooth manifold M . We write X(M)

to denote the set of vector fields on M and Γ(M) to denote the space of smooth sections of
E. A connection in E is a map

∇ : X(M)× Γ(E)→ Γ(E)

written (X, Y ) 7→ ∇XY, satisfying the following properties:

1. ∇XY is linear over C∞(M) in X : for f1, f2 ∈ C∞(M) and X1, X2 ∈ X(M),

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y

2. ∇XY is linear over R in Y : for a1, a2 ∈ R and Y1, Y2 ∈ Γ(E),

∇X (a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2

3. ∇ satisfies the following product rule: for f ∈ C∞(M),

∇X(fY ) = f∇XY + (Xf)Y

Sometimes ∇ is referred to as a covariant derivative, emphasizing its role as a differ-
ential operator. This definition is slightly more general than what we actually need. We
will be interested in connections where E = TM , which we call affine connections. In
particular, an affine connection is a map

X(M)× X(M)→ X(M)

which satisfies the properties in the above definition. It is good to acknowledge that this
is a very top-down approach to mathematics. We know how we would like ∇ to behave
since we are modeling it off of the directional derivative of vector fields in Rn, so we select a
handful of key properties from the case in Rn and declare that any map satisfying them is a
candidate for an analogous operator on our manifold. Indeed, you can check that properties
1-3 are satisfied by the affine connection defined earlier for Rn.

The way to ‘get your boots on the ground’ with an affine connection is via connection
coefficients.
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Definition 4.2. The connection coefficients of an affine connection with respect to a
chart φ with tangent vectors ∂1, . . . , ∂n are defined by

∇∂i∂j = Γkij∂k.

The connection coefficients capture how the bases of the tangent space interact with
each other, so it shouldn’t be hard to believe that they fully determine the connection on
the chart. In practice, connection coefficients are frequently used to prove results and to get
your hands on explicit examples.

Example 4.1. Recall the definition of ∇ given for Rn. Then

∇∂i∂j = lim
t→∞

∂j(p+ t∂i(p))− ∂j(p)
t

=
∂j − ∂j

t
= 0

So the usual geometry of Rn is characterized by global connection coefficients of 0.

To see that there exists at least one connection on any manifold, one can use a partition
of unity argument to construct a connection induced by the standard connection on Rn.
The idea being that we can locally obtain a connection from Rn at all points of M , and
we can use a partition of unity to patch these together into a full connection. However,
a general manifold might have many possible affine connections, but we will see later that
a Riemannian metric gives us a way to choose one uniquely. Before we get there, we will
work with affine connections a bit more and see how we obtain a notion of a straight line
for a manifold with an affine connection. To get started, let’s make rigorous the concept of
a vector field along a curve.

Definition 4.3 (cite Ben Andrews). Let γ : I → M be a smooth curve. A vector field
along γ is a smooth map V : I → TM with V (t) ∈ Tγ(t)M for each t. The set of all smooth
vector fields along γ is denoted Xγ(M).

An immediate example is γ′(t). We defined an affine connection as a map of vector
fields, but we can use it to define an operator on vector fields along curves as the following
proposition shows.

Proposition 4.1. [1] Let M be a smooth manifold and ∇ an affine connection on M . Then
for any smooth curve γ : I →M there is a natural covariant derivative along γ, denoted ∇t,
which takes a smooth vector field along γ to another, while satisfying

1. ∇t(V +W ) = ∇tV +∇tW for all V and W in Xγ(M);

2. ∇t(fV ) = f ′V + f∇tV for all f ∈ C∞(I) and V ∈ Xγ(M);

3. If V is given by the restriction of a vector field Ṽ ∈ X(M) to γ, then ∇tV = ∇γ̇Ṽ ,
where γ̇ is the tangent vector to γ.

The first two properties give us a form of linearity and a product rule, inherited from ∇.
The third property is more interesting. A fact implicitly used in the statement of property
three is that ∇XY (p) only relies on the value of X at p, and the values that Y takes on
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in a neighborhood of p. This is why it makes sense to write ∇vY for v a vector rather
than a vector field. In fact, sometimes affine connections are defined in this way, as a map
with domain TM × X(M). So then, property three is strengthening this fact to ∇XY (p)
depending only on the value of X at p and the values Y takes on the neighborhood of some
curve through p.

Recall that the problem we began this section with was to generalize the straight line of
Rn via the property of zero acceleration. Now that we can make sense of ∇ for curves, rather
than whole fields, we properly define what acceleration actually looks like in a manifold with
connection.

Definition 4.4. [4] Let γ : I →M be a smooth curve on a manifold M with connection ∇.
Define the acceleration of γ to be the vector field ∇tγ

′ along γ.

Now we are equipped to say that straight line for M with connection ∇ is a curve γ with
acceleration zero. This is captured in the notion of parallel transport.

Definition 4.5. Let γ : I →M be a smooth curve. A vector field V ∈ Xγ(M) is said to be
parallel along γ if ∇tV = 0.

In other words, a straight line in M is a curve γ such that ∇tγ
′ is parallel along γ.

As promised, an affine connection on a general manifold gives us an alternative approach
to generalizing the straight lines. We call these curves geodesics. Since we have two
formulations of geodesics, we want to know how to make them agree with each other. The
Fundamental Theorem of Riemannian Geometry will answer this question.

5 Levi-Civita

We have now established two different approaches to geometry on a smooth manifold. The
first involved a symmetric 2-tensor called a Riemannianc metric which gives us a smoothly
varying inner-product for each TpM , and the second involved a choice of how to differentiate
a vector field with respect to another, which we called an affine connection. The Levi-Civita
connection is the connection that unites these two views, and its existence is the content of
the following theorem.

Theorem 5.1. [4](The Fundamental Theorem of Riemannian Geometry).
Let (M, g) be a Riemannian manifold. There exists a unique connection ∇ on TM that

is compatible with g and symmetric. It is called the Levi-Civita connection of g (or also,
when g is positive definite, the Riemannian connection).

To fully understand this theorem, we need to break down what is meant by compatibility
and symmetry. We once again look to Rn for guidance on how to structure our generalized
theory. It is a fact of the standard connection and Riemannian metric on Rn that

∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

So nabla and 〈·, ·〉 satisfy a product rule. We generalize this with the following definition.
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Definition 5.1. Given a Riemannian manifold (M, g), we say a connection ∇ on M is
compatible with the metric on M if for all X, Y ∈ X(M), and every v ∈ TxM ,

v(g(X, Y )) = g(∇vX, Y ) + g(X,∇vY ).

It is true that a Riemannian manifold can have many compatible connections, so we need
further constraints for the uniqueness of the theorem to hold. For this we turn to the concept
of torsion.

Definition 5.2. Given a manifold M with connection ∇, we define the torsion tensor T
by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

We can understand symmetry in terms of the torsion tensor.

Definition 5.3. A connection ∇ on M is said to be symmetric if for all X, Y ∈ X (M),

∇XY −∇YX = [X, Y ].

In other words, a symmetric connection is one whose torsion tensor vanishes. With these
definitions in hand, we can prove the uniqueness part of the theorem.

Proof. [1] Let (M, g) be a Riemannian manifold and let ∇ be a symmetric connection which
is compatible with g. The symmetry condition gives us

∇XY −∇YX = [X, Y ];

∇YZ −∇ZY = [Y, Z];

∇ZX −∇XZ = [Z,X].

The compatibility condition gives us

g(∇XY, Z) + g(Y,∇XZ) = Xg(Y, Z);

g(∇YZ,X) + g(Z,∇YX) = Y g(Z,X);

g(∇ZX, Y ) + g(X,∇ZY ) = Zg(X, Y ).

Taking the sum of the first two of the second set of equations and subtracting the third, we
obtain

g(∇XY, Z) + g(Y,∇XZ) + g(∇YZ,X) + g(Z,∇YX)

− g(∇ZX, Y )− g(X,∇ZY ) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y ).

Then we use the symmetry and linearity of g to arrange the left hand side as

g(X,∇YZ −∇ZY ) + g(Y,∇XZ −∇ZX) + g(Z,∇YX +∇XY ).

Next, we substitute the first set of equations

g(X, [Y, Z]) + g(Y,−[Z,X]) + 2g(Z,∇YX) + g(Z, [X, Y ]).
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Finally, we can write

g(Z,∇YX) = (Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

+ g(X, [Z, Y ]) + g(Y, [Z,X]) + g(Z, [Y,X]))/2.

The punchline is that the g inner-product of ∇YX with any vector field Z is written in terms
of g, which fully determines ∇. Thus if such a ∇ exists, it is unique.

We won’t prove existence here, but the basic idea is to define a connection by the last
equation above and show that it satisfies all the necessary definitions.

It is a consequence of the Hopf-Rinow theorem that if (M, g) is a complete metric space,
then a geodesic (defined in terms of the Levi-Civita connection) between any two points
always exists and agrees with the distance function (defined in terms of the metric). That
is, for any p, q ∈ M there exists a γ : [0, 1] → M so that γ(0) = p and γ(1) = q, γtγ

′ along
γ is 0, and the length of γ is minimal among all unit-speed curves from p to q. So we have
found a way to reconcile our two points of view on the straight line!

To conclude our journey, we will define the Riemann curvature tensor to demonstrate an
application of the Levi-Civita connection.

Definition 5.4. Let (M, g) be a Riemannian manifold. We define the Riemann curvature
tensor R(X, Y, Z) by

R(X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]

where ∇ is the Levi-Civita connection for g.

One can show that the map is multilinear over C∞(M), so it really is a (1, 3)-tensor. The
details of this tensor field may as well be the subject of a whole other project, so we’ll simply
offer an intuitive interpretation of what is going on. The basic idea is that R captures the
deviation of the geometry of M from the standard geometry on Rn. One can imagine this
in terms of parallel transporting a vector through R3 on a plane versus on 2-sphere along a
closed path. On the plane, no matter what closed path is taken, one should expect the vector
to remain unchanged when it returns from its journey. However, there are closed paths (a
triangle works) on the sphere which do not have this property. This sort of difference can
be derived from the Riemann curvature tensor.

In the case of any 1-dimensional manifold, R will be identically zero due to certain
symmetries of the tensor - which is exactly what we should expect since 1-dimensional
manifolds all look like R locally. In the 2-dimensional case, one can use R to generalize
both the Gaussian and sectional curvatures which we defined at the beginning of the paper.
Past this, there are many other kinds of notions of curvature one can extract from R: Ricci,
Scalar, and Weyl to name a few. Curvature at this level of generality is not easy to describe,
hence the need many different tools to capture the various properties of curvature.

Conclusion

We have ended our discussion with a brief glimpse at abstract curvature. To access these
ideas in a rigorous way, one needs to understand the fundamentals of Riemannian geometry
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and the build-up to the Levi-Civita connection. There are a lot of details to pick up along
the way, many of which were omitted from this paper. Hopefully the survey of Euclidean
curvature in one and two dimensions helped motivate the quest to generalize curvature
to any smooth manifold. The Levi-Civita connection is an important step towards this
generalization, as it equips a Riemannian manifold with a connection that meshes with the
already established metric structure, paving the way for a large flurry of curvature-related
tensors to be defined.
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