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ABSTRACT

GR-NTRU: UNDERSTANDING THE SECURITY OF LATTICE-BASED CRYPTOSYSTEMS

THROUGH GROUP RINGS

Originally conceived in 1996 by authors Hoffstein, Pipher, and Silverstein, the N th-degree

Truncated Ring Unit (NTRU) cryptosystem rivals common cryptosystems such as RSA in terms of

speed and security. In pursuit of a deeper understanding of NTRU, we explore a generalization of

the cryptosystem using group rings, known as GR-NTRU. This perspective allows for the formula-

tion of a new kind of attack on NTRU-like cryptosystems. In particular, via representation theory,

one can decompose a group ring into smaller matrix rings. This decomposition can greatly impact

the computational complexity of lattice-based attacks on NTRU-like cryptosystems. We present

a summary of how this attack affects GR-NTRU for certain classes of groups, and we end with a

detailed example for the group S3.
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Chapter 1

Introduction

In 1994, Peter Shor shook the world of computer security with the publication of Polynomial-

Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer [22].

This seminal paper implied that when quantum computing becomes more feasible, the computa-

tionally hard problems that underpinned common cryptosystems, such as RSA, elliptic curve cryp-

tography (ECC), and Diffie-Helman key exchange (DHKE), would become trivial. This called

attention to quantum-resilient cryptosystems.

A cryptosystem fails to be quantum-resilient once we find a quantum algorithm that trivializes

its security. As mentioned above, RSA is no longer quantum-resilient as there exist theoretical

algorithms which can factor integers with incredible speed, rendering RSA obsolete in a world

with robust quantum computers. Fortunately for now, working quantum computers are still limited

in their computational capacity. Two of the largest quantum computers as of 2021 are Google’s

Sycamore with 53 qubits and Zuchongzi of the University of Science and Technology in China

with 56 qubits, while one of the most efficient proposed circuits for Shor’s algorithm requires

2n + 3 qubits to factor an n-bit number [3]. Common encryption key lengths for RSA are 2048

and 4096 bits, so quantum computers cannot threaten their security yet.

We introduce the NTRU cryptosystem as one of the most promising, quantum-resilient cryp-

tosystems. Authors Hoffstein, Pipher, and Silverstein published NTRU: A Ring-Based Public Cryp-

tosystem in 1998 [7]. The acronym stands for N th-degree Truncated Polynomial ring Unit, refer-

encing the underlying algebraic stucture, Z[x]/(xN −1). Within the past decade, the cybersecurity

community has recognized NTRU as a cryptosystem fit for practical application. The cryptosystem

has also been selected as a finalist for NIST’s post-quantum cryptography standardization effort in

2020 [1]. However, NTRU is not only an excellent post-quantum candidate for computer security,

it also outperforms standard cryptosystems in the present digital realm. For example, a message of
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block length N takes O(N2) operations to ecrypt or decrypt in the NTRU cryptosystem, which is

a significant improvement over the O(N3) operations needed in RSA [7].

We will establish the necessary background for understanding NTRU in the context of convo-

lution polynomials as well as lattices. After this, we will establish the procedures of the NTRU

cryptosystem and look at some of the basic attacks against it. Afterwards, we will turn our attention

towards variants of NTRU. We will see that NTRU is algebraically flexible; the basic formulation

of the cryptosystem still works when we make alterations to the underlying ring.

Our focus is the GR-NTRU variant, which generalizes NTRU in terms of group rings. One

can realize the convolution polynomials, Z[x]/(xN − 1), as the group ring Z[CN ], where CN is the

cyclic group of size N . GR-NTRU provides the framework to develop a cryptosystem for Z[G],

for any group G. While this perspective alone is a great contribution to the overall understanding

of NTRU-like cryptosystems, it also reveals a new kind of attack on NTRU-like cryptosystems

that leverages the theory of representations of the group G. We will conclude with a discussion of

examples of this attack on specific groups.
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Chapter 2

Background

2.1 Convolution Polynomial Rings
The core algebraic structures of the NTRU cryptosystem are convolution polynomial rings.

Definition 2.1.1. Let N be a positive integer. The ring of convolution polynomials of rank N is

the quotient ring

R =
Z[x]

(xN − 1)
.

Further, the ring of convolution polynomials of rank N modulo p is the quotient ring

Rp =
(Z/pZ)[x]

(xN − 1)
.

It is helpful to view these rings as Z-modules where we may identify an element

a(x) =
N−1∑
i=0

aix
i ∈ R or Rp,

with the vector of coefficients (a0, . . . , aN−1). When we intend to view a convolution polynomial

a(x) as a vector, we write a.

The name convolution comes from the ring multiplication, which is commonly refered to as

the convolution of polynomials and denoted by ?.

Proposition 2.1.1. The product of two polynomials a(x), b(x) ∈ R is given by the formula

a(x) ? b(x) = c(x) with ck =
∑

i+j≡k mod N

aibk−i.
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In vector form we can write this as

a ? b = (a0, . . . , aN−1) ? (b0, . . . , bN−1) = (c0, . . . , cN−1),

with coefficients ck given by the above proposition.

Example 2.1.1. Set N = 11 and let

f(x) = 1 + 2x1 + 3x4 + 5x5 + 9x6 + 6x7 + 6x8,

and

g(x) = 3x1 + 2x2 + 2x4 + 2x5 + 5x8 + x9.

Then,

f(x) ? g(x) = 30 + 42x1 + 48x2 + 54x3 + 41x4 + 51x5 + 31x6 + 37x7 + 47x8 + 57x9 + 42x10.

We have a natural homomorphism from R to Rp by reducing the coefficients modulo p.

φ : R→ Rp defined by φ ((a0, . . . , aN−1)) = (ā0, . . . , āN−1).

Where āi denotes reduction of an integer modulo p.

We may invert this process via a lifting map ψ : Rp → R. This map, however, is not natural

and involves a choice of how we bring the coefficients back. In the decryption process of NTRU,

it is desirable to lift an element of Rp to R by taking coefficients to have smallest absolute value.

Definition 2.1.2. Let a(x) ∈ Rp. The center-lift of a(x) to R is the unique polynomial a′(x) ∈ R

satisfying

a′(x) mod p = a(x)
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whose coefficients are chosen in the interval

−p
2
< a′i ≤

p

2
.

Example 2.1.2. Set N = 5 and let

f(x) = 8− 2x1 − 5x2 + 6x3 + 11x4.

We reduce f modulo p = 3,

φ(f(x)) ≡ f̄(x) ≡ 2 + x1 + x2 + 2x4 mod 3 ∈ R3.

Lifting f̄ back to R,

ψ(f̄(x)) = −1 + x1 + x2 − x4

It is worth noting that the lifting map does not act as an inverse. However, if the coefficients of

the polynomial were to already be in the interval (−p/2, p/2], it would return the polynomial one

began with.

Inverting polynomials modulo p is important for generating public/private key pairs in NTRU.

The following gives necessary and sufficient conditions for an element of Rp to have a multiplica-

tive inverse.

Proposition 2.1.2. Let q be prime. Then a(x) ∈ Rq has a multiplicative inverse if and only if

gcd(a(x), xN − 1) = 1 in (Z/qZ)[x].

When it exists, we can find it using the Extended Euclidean algorithm for polynomials.
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Example 2.1.3. Let N = 7 and p = 3. We compute the inverse of a(x) = x3 + 2x2 + 1 in R3.

First, compute gcd(a(x), x3 − 1) modulo 3. Proceeding with the Euclidean algorithm,

x7 + 2 ≡ a(x) ·
(
x4 + x3 + x2 + 2

)
+ x2 mod 3

a(x) ≡
(
x2
)
· (x+ 2) + 1 mod 3

so gcd(a(x), x7 − 1) = 1. This allows us to conclude that a(x) is invertible in R2. Via the

substitution method of the extended Eucldiean algorithm we obtain,

1 ≡ (2x+ 1) ·
(
x7 + 2

)
+ a(x) ·

(
x5 + 2x2 + 2x+ 2

)
mod 3.

So the inverse of a(x) in R3 is x5 + 2x2 + 2x+ 2.

In the NTRU cryptosystem, it is useful to have convolution polynomials with coefficients as

small as possible.

Definition 2.1.3. Let d1 and d2 be positive integers, we let

T (d1, d2) =


a(x) has d1 coefficients equal to 1

a(x) ∈ R : a(x) has d2 coefficients equal to − 1

a(x) has all other coefficients equal to 0

 .

This set is referred to as the ternary polynomials, in reference to the three possible choices for each

coefficient.

Example 2.1.4. Let d1 = d2 = 2. Then

a(x) = 1− x− x3 + x5

is an element of T (d1, d2) as it has two coefficients equal to 1, two coefficients equal to -1, and the

rest are 0.
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The following gives a formula for the size of T (d1, d2) in terms of d1, d2, and N .

|T (d1, d2) | =
(
N

d1

)(
N − d1
d2

)
=

N !

d1!d2! (N − d1 − d2)!

2.2 Lattices
Lattices share many of the definitions and properties that one encounters in studying finite-

dimensional vector spaces. However, the aspects in which lattices depart from vector spaces are

exactly those that NTRU-like cryptosystems can leverage for hard cryptographical problems. For

example, there are no shortest non-zero vectors in a vector space, whereas in lattices there are such

objects.

Definition 2.2.1. Let v1, . . . ,vn ∈ Rn be a set of linearly independent vectors. The lattice L

generated by v1, . . . ,vn is the set of linear combinations of v1, . . . ,vn with coefficients in Z,

L = {a1v1 + a2v2 + · · ·+ anvn | ai ∈ Z} .

As is the case for vector spaces, a basis for a lattice L is any set of Z-linearly independent

vectors that generate L. All possible bases for L have the same number of elements, and we call

this number the dimension1 of L and denoted by dimL.

Proposition 2.2.1. Any two bases for a lattice L are related by a matrix having integer coefficients

and determinant equal to ±1.

Definition 2.2.2. An integral lattice is a lattice whose vectors all have integer coordinates. Equiv-

alently, an integral lattice is an additive subgroup of Zn for some positive integer n.

For the purposes of our discussion, we only need to consider integral lattices where dimL = n.

From this point onwards, we assume our lattices have these properties.

1Also known as rank.
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Given an ordered basis B = {v1, . . . ,vn} of an integral lattice L, we can construct the n × n

matrix M whose ith row is vi. In this way, a different basis for L can be realized by left multipli-

cation by an n× n matrix such as those in proposition 2.2.1.

Example 2.2.1. Let L be the lattice generated by the basis

B1 =


1

0

 ,
1

1


 .

The lattice L also has basis

B2 =


2

1

 ,
3

2


 .

One can calculate that these two matrices are related by

M =

2 1

1 1

 .
More precisely, B2 = MB1.

A lattice L ⊂ Rn inherits the usual Euclidean norm from Rn. That is, if v = (v1, . . . , vn) ∈ L,

where v is written with respect to the standard basis,

‖v‖ =
√
v21 + · · ·+ v2n.

The following gives an alternate characterization of a lattice.

Definition 2.2.3. A non-empty subset L of Rn is an additive subgroup if it is closed under addition

and subtraction. It is called a discrete additive subgroup if there is a positive constant ε > 0 with

the following property: for each v ∈ L,

L ∩ {w ∈ Rn : ‖v −w‖ < ε} = {v} .
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Theorem 2.2.1. A subset of Rm is a lattice if and only if it is a discrete additive subgroup.

The next definition introduces an important tool for understanding a lattice with respect to a

particular basis.

Definition 2.2.4. Let L be a lattice of dimension n and let B = b1, . . . ,bn be a basis for L. The

fundamental domain for L corresponding to B is the set

F(B) = {t1b1 + · · ·+ tnbn : 0 ≤ ti < 1}

One of the valuable properties of the fundamental domain is the following.

Proposition 2.2.2. Let L ⊂ Rn be a lattice of dimension n and let F be a fundamental domain for

L. Then every vector w ∈ Rn can be written in the form

w = t + v for a unique t ∈ F and a unique v ∈ L.

Equivalently, the union of the translated fundamental domains

⋃
v∈L

(F + v),

where

F + v = {t + v : t ∈ F} ,

covers Rn,

A useful invariant of the fundamental domain over varying bases is volume. That is, given two

bases B and P for a lattice L, the volumes of the two parallelepipeds F(B) and F(P) are equal.

This can be seen as a consequence of proposition 2.2.1, as the determinant of any change of basis

matrix will be ±1.

Definition 2.2.5. Let L be a lattice of dimension n and let F be a fundamental domain for L. Then

the n-dimensional volume of F is called the determinant of L. It is denoted by det(L).
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The following result gives a useful upper bound for the volume of a fundamental domain.

Proposition 2.2.3 (Hadamard’s Inequality). Let L be a lattice, let B = {v1, . . . ,vn} be a basis

for L, and let F be a fundamental domain for L. Then

detL = Vol(F) ≤ ‖v1‖ · · · ‖vn‖.

The key fact is that the closer the basis B is to being orthogonal, the closer the inequality is to

being an equality.

Proposition 2.2.4. Let L ⊂ Rn be a lattice of dimension n, let v1, . . . ,vn be a basis for L. Let M

be the matrix whose rows are the basis vectors. Then the volume of F is given by

Vol(F(B)) = | det(M)|.

2.3 Introduction to SVP and CVP
In this section, we introduce and analyze two fundamental problems of lattices.

• Shortest Vector Problem (SVP): Given a lattice L, find a nonzero v ∈ L that minimizes ‖v‖.

• Closest Vector Problem (CVP): Given a lattice L and an element w ∈ Rn, find v ∈ L that

minimizes ‖v −w‖ with v 6= w.

Note that SVP is just a special case of CVP with w = 0. The following theorem of Her-

mite provides an upper bound for the smallest vector in a lattice in terms of its dimension and

determinant.

Theorem 2.3.1 (Hermite’s Theorem). Every lattice L ⊂ Rn of dimension n contains a nonzero

vector v ∈ L satisfying

‖v‖ ≤
√
n det(L)

1
n .
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Hermite’s constant γn is the smallest value such that every lattice L with dimension n contains

a nonzero vector v ∈ L where

‖v‖2 ≤ γn det(L)2/n.

So by Hermite’s theorem, we have that γn ≤ n. Surprisingly, this constant is only known for

1 ≤ n ≤ 8 and n = 24. For example, in the case where n = 4, we have that γn =
√

2. This useful

bound given by Hermite’s theorem is a corollary of the following important result in the theory of

lattices.

Theorem 2.3.2 (Minkowski’s Theorem). Let L ⊂ Rn be a lattice of dimension n and let S ⊂ Rn

be a bounded symmetric convex set whose volume satisfies

Vol(S) > 2n det(L).

Then S contains a nonzero lattice vector. If S is also closed, it suffices to take Vol(S) ≥ 2n det(L).

Improvements on this bound can be made by involving the gamma function Γ(s), which we

define by

Γ(s) =

∫ ∞
0

xs−1e−xdx.

We also have the following useful estimate on Γ(s) due to Stirling.

ln Γ(1 + s) = ln(s/e)s +
1

2
ln(2πs) +O(1) as s→∞.

Exact bounds for a shortest vector vshortest of L for large n are difficult to obtain, but the fol-

lowing heuristic gives us a reasonable way to estimate them: the number of lattice points in a

ball centered at 0 should approximately be the volume of the ball divided by the volume of a

fundamental domain.
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Theorem 2.3.3. Let BR(a) be the ball of radius R centered at a ∈ Rn. Then the volume of BR(a)

is

Vol(BR(a)) =
πn/2Rn

Γ(1 + n/2)
.

Via Stirling’s formula, when n is large, the volume of the ball BR(a) is approximated by

Vol(BR(a)) ≈
√

2πe

n
R.

Using this formula for the volume of an n-ball, we introduce the Gaussian expected shortest

length.

Definition 2.3.1. Let L be a lattice of dimension n. The Gaussian expected shortest length is

σ(L) =

√
n

2πe
(detL)

1
n .

The Gaussian heuristic states that a shortest nonzero vector in a random lattice will satisfy

‖vshortest‖ ≈ σ(L).

In practice, the Gaussian heuristic is useful for understanding the difficulty of finding a shortest

vector. If a true shortest vector v in L is much smaller than σ(L), then it turns out that lattice

reduction algorithms are more typically more successful in finding v.

Babai’s Algorithm

This section introduces Babai’s Algorithm. We will indicate the motivation for the algorithm

here, but details are omitted.

Babai’s algorithm is based on the relatively simple idea that the elements of a lattice L that are

closest to a given vector w ∈ Rn are likely to be vertices of the translate of the fundamental region

which contains w. This idea is a fact when the fundamental region is built from orthogonal basis
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vectors. For example, consider the case of R2 and L given as the square integer lattice. To find the

closest vector to w ∈ R2, simply find which grid square w lies in, and test the four corners.

Given an orthogonal basis B = {v1, . . . ,vn} for the lattice L ⊂ Rn, we may calculate the

length of a vector in L via

‖a1v1 + · · ·+ anvn‖2 = a21‖v1‖+ · · ·+ a2n‖vn‖.

Thus, in the case where w = 0, we may find the solution to the SVP by taking the shortest vectors

of the set {±v1, . . . ,±vn}. However, the reliability of the statement decreases as the given basis

becomes less orthogonal. For this reason, we recall Hadamard’s inequality from proposition 2.2.3.

From this inequality, we define the Hadamard ratio2 of the basis B to be

H(B) =

(
detL

‖v1‖‖v2‖ · · · ‖vn‖

)1/n

.

The possible values of H(B) lie between 0 and 1, where 0 indicates linear dependence, and

1 indicates orthogonality. Through this ratio, we can decide on a threshold of orthogonality. For

example, we could say that a basis B is sufficiently orthogonal if 0.9 ≤ H(B) ≤ 1.

The idea of Babai’s algorithm is to first find a sufficiently orthogonal basis for L, and then

search among the vertices {±v1, . . . ,±vn} of F(B) for a shortest vector.

2.4 Group Ring Background
Group rings are a natural generalization of a vector space. Our definition of group ring will

generalize in two ways: we allow the scalars to be a ring and the ‘vectors’ will be the elements of

some chosen group.

Definition 2.4.1. Let R be a ring and G be a group. We define the group ring R[G] to be the

free R-module with basis G where multiplication is defined distributively in accordance with the

2The reciprocal is known as the orthogonality defect.
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inherent multiplication of G. That is,

(∑
g∈G

ag · g

)
·

(∑
h∈G

bh · h

)
=
∑
g,h∈G

(agbh) · (gh) =
∑
f∈G

cf · f,

where

cf =
∑
gh=f

agbh =
∑
g∈G

agbg−1f .

Addition is likewise defined in the natural way,

(∑
g∈G

ag · g

)
+

(∑
g∈G

bg · h

)
=
∑
g∈G

agbg.

We can also write elements of a group ring as a tuple when the ordering on the elements of G is

clear. For example, if G = CN , the cyclic group of size N with generator λ, then we may identify

a =
∑N

k ak · λk with the tuple a = (a1, . . . , aN).

In this paper we will be primarily concerned with the case where R = Z. This tethers GR-

NTRU to the original NTRU, as it relates the cryptosystem to the realm of integral lattices.

Group rings play a central role in the theory of group representations. This connection is

important for analyzing the security of GR-NTRU later on. We present a summary of group repre-

sentations and the relationship of the theory to group rings.

Definition 2.4.2. Let G be a group and K be a field. A representation of G over K of degree n is

a group homomorphism

σ : G→ GL(K,n).

Not surprisingly, representations are the key object of study in representation theory. A repre-

sentation σ defines an action of G on the vector space V = Kn via

g · v = σ(g)v

14



where g ∈ G and v ∈ V . Also, given an action of G on a vector space V we may obtain a

representation of G. When the context is clear, we may refer to such a representation as V . What

follows are some key definitions relating to a represntation V .

Definition 2.4.3. Let V be a representation of G of degree n.

• If the action of G on V fixes a subspace W of V , we call W a subrepresentation of V .

• If V only has itself and 0 as representations, we call V irreducible.

• Given representations V andW ofG, if there exists a vector space isomorphism ψ : V → W

such that

ψ(g · v) = g · ψ(v)

for all g ∈ G and v ∈ V , we say that V and W are isomorphic as representations of G.

Now we use these definitions to state two key facts about representations. First we give a

relationship between irreducible representations of G and conjugacy classes of G.

Proposition 2.4.1. Let G be a finite group. Then the number of irreducible representations of G is

equal to the number of conjugacy classes in G.

Next, we describe the correspendence between representations of a group G and group rings.

Proposition 2.4.2. A group representation σ : G→ GL(K,n) can be naturally extended to a ring

homomorphism of group rings σ̄ : K[G]→Mn(K). Likewise, a ring homomorphism σ̄ : K[G]→

Mn(K) provides a group representation σ : G→ GL(K,n) via restriction.
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Chapter 3

NTRU

3.1 The encryption/decryption process
The NTRU public key cryptosystem uses convolution polynomial rings to securely transfer

ciphertexts. In this section we describe the mathematics of this scheme.

First, recall that for a fixed N , we defined R to be the ring of convolution polynomials

Z[x]/(xN − 1) and defined Rp as (Z/pZ)[x]/(xN − 1). We also defined the set T (d1, d2) by,

T (d1, d2) =


a(x) has d1 coefficients equal to 1

a(x) ∈ R : a(x) has d2 coefficients equal to − 1

a(x) has all other coefficients equal to 0

 .

Elements of T (d1, d2) are important for the efficiency of NTRU. Their simple structure allows for

quick computations of the convolution product. The small coefficients also allow us to control

the size of the convolution polynomials computed throughout encryption and decryption, which is

important for avoiding decryption failure.

Set-up: To begin, public parameters (N, p, q, d) are chosen so that N and p are prime,

gcd(N, q) = 1, and q > (6d+ 1)p.

Key Creation: Alice does the following

• chooses a private f ∈ T (d+ 1, d), which is invertible in both Rq and Rp.

• computes inverses fq and fp in Rq and Rp respectively.

• chooses a private g ∈ T (d, d).

• Publishes public key h = fq ? g.

Encryption: Bob does the following
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• Chooses plaintext m ∈ Rq so that its coefficients satisfy −p
2
< mi ≤ p

2
.

• Chooses a random r ∈ T (d, d).

• Uses Alice’s public key h to compute e ≡ ph ? r + m mod q.

• Sends ciphertext e to Alice.

Decryption: Alice does the following

• Computes f ? e ≡ pg ? r + f ?m mod q.

• Takes the center-lift of f ? e, call it a, and computes m ≡ fp ? a mod p.

Next we follow an example from Introduction to Mathematical Cryptography [8].

Example 3.1.1. Choose public parameters (N, p, q, d) = (7, 3, 41, 2), which satisfy q > (6d+1)p.

Then, following the above process

First the key creation,

• Alice chooses f(x) = x6−x4+x3+x2−1 ∈ T (3, 2) and g(x) = x6+x4−x2−x ∈ T (2, 2).

• Then Alice finds the inverses

fq(x) = 8x6 + 26x5 + 31x4 + 21x3 + 40x2 + 2x+ 37 ∈ Rq,

fp(x) = x6 + 2x5 + x3 + x2 + x+ 1 ∈ Rp.

• Alice keeps (f(x), fp(x)) as the private key.

• Alice publishes the public key

h(x) = fq(x) ? g(x) = 20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x+ 30 ∈ Rq.

Next, Bob uses the public key to encrypt the plaintext
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• Bob wants to send Alice the plaintext

m(x) = −x5 + x3 + x2 − x+ 1.

• Bob chooses the random element

r(x) = x6 − x5 + x− 1.

• Using r, Bob sends Alice the ciphertext

e(x) ≡ pr(x) ? h(x) +m(x) ≡ 31x6 + 19x5 + 4x4 + 2x3 + 40x2 + 3x+ 25 mod q.

Finally, Alice decrypts the ciphertext.

• Alice computes

f(x) ? e(x) ≡ x6 + 10x5 + 33x4 + 40x3 + 40x2 + x+ 40 mod q.

• Alice takes the center lift of f(x) ? e(x) to obtain

a(x) = x6 + 10x5 − 8x4 − x3 − x2 + x− 1 ∈ R.

• To finish the decryption, Alice reduces a(x) modulo p and computes

fp(x) ? a(x) ≡ 2x5 + x3 + x2 + 2x+ 1 mod p.

Taking the center lift of the above modulo p will return the plaintext m(x).
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3.2 Proof of Decryption
We outlined a summary of the mathematical procedure of NTRU, but we still need to verify

that Alice’s decryption process really gives back the orginal plaintext.

Theorem 3.2.1. Given NTRU parameters (N, p, q, d) where

q > (6d+ 1)p, (3.1)

then, in the language of the procedure above, fp ? a ≡m mod p.

Proof. We start by unpacking the calculation of a,

a ≡ f ? e mod q

≡ f ? (ph ? r + m) mod q

≡ pf ? fq ? g ? r + f ?m mod q

≡ pg ? r + f ?m mod q.

Next, in R we examine

pg ? r + f ?m. (3.2)

Note first that g, r ∈ T (d, d), so that the maximum coefficient of their convolution product is 2d.

Likewise, f ∈ T (d+1, d) and m was chosen to be a center lift of a polynomial - i.e. its coefficients

satisfy −p
2
< mi ≤ p

2
- so that the largest possible coefficient of f ?m is (2d + 1) · p

2
. Then the

largest coefficient of (3.2) has magnitude at most

p · 2d+ (2d+ 1) · p
2

=

(
3d+

1

2

)
p.

Now (3.1) becomes relevant. This bound ensures that the coefficients of (3.2) have magnitude

strictly smaller than q/2, so that computing modulo q, rather than in R, and then taking the center
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lift will result in the same thing,

a = pg ? r + f ?m. (3.3)

The rest simply follows from unfolding the calculation of Fp ? a modulo p,

fp ? a ≡ fp ? (pg ? r + f ?m) mod p

≡ fp ? f ?m

≡m.

This proof enlightens us as to why certain choices are made in the selection of various pieces of

NTRU. We involve the ternary polynomials T (d1, d2), because their coefficients let us effectively

control the size of the coefficients, and by choosing q large enough we ensure that (3.3) holds in

the proof.

3.3 Attacks on NTRU
In this section, we state the main mathematical problem posed for an attacker against an NTRU

cryptosystem. We then explore some of the basic methods of attack, and describe the ideas behind

lattice-based attacks.

Recall that the public key of an NTRU cryptosystem is h = fq ? g.

Definition 3.3.1. The NTRU Key Recovery Problem is as follows. Given the convolution polyno-

mial h, find ternary polynomials f and g such that f ? h ≡ g mod q.

When we examine NTRU in the context of lattices, we will see that solving the NTRU Key

Recovery Problem is equivalent to solving the SVP in a particular lattice. This equivalence is what

guarantees that the hard mathematical problem for NTRU is sufficiently difficult for a practical

cryptosystem.
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Brute Force Attack

The most rudimentary attack on any cryptosystem is a brute force attack. In a private key attack

on NTRU, one can recover the private key by calculating f ? h mod q for all f ∈ T (d + 1, d) and

checking if it has small entries or by trying all g ∈ T (d, d) and checking if g ? h−1 mod q has

small entries. Since |T (d, d)| is typically smaller than |T (d + 1, d)|, the security of private keys

under brute force attacks are determined by |T (d, d)|.

Likewise, a brute force attack on a particular plaintext m can be made by checking if e − r ?

h mod q has small entries for all r ∈ T (d, d). The security of a particular message is also given

by |T (d, d)|.

There is an improvement to the brute force search that are worth mentioning. To describe it,

we first define rotations of a convolution polynomial.

Definition 3.3.2. Given a convolution polynomial f = (f1, . . . , fN) ∈ R, where the rank of R is

N , a rotation of f is xk ? f where k is any integer.

We remark that for a given f , there are N distinct rotations of f . It follows that if f and g give a

solution to the problem, then so do xk ? f and xk ? g for 1 ≤ k < N . However, if m is a plaintext,

then if we use xk ? f and xk ? g to decrypt, we obtain the rotated plaintext xk ?m. Thus it suffices

to search for solutions upto rotation, and once a solution is found one must decide which rotation

of the plaintext is valid. This reduces computations by a factor of 1/N .

3.4 Lattice-based attacks
A variety of attacks exist for NTRU, however we are only concerned with lattice-based attacks

for our discussion. We begin by understanding an NTRU cryptosystem in the context of lattices,

where we may carry out an attack on the cryptosystem by solving the SVP for a certain lattice.

Once we establish this connection, we can formulate a lattice based attack by finding a sufficiently

orthogonal basis and applying Babai’s algorithm.
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Realizing NTRU with lattices

Begin with an NTRU cryptosystem with parameters (N, p, q, d) and a public key

h(x) = h0 + h1x+ · · ·+ hN−1x
N−1.

We define the NTRU lattice LNTRU
h associated to h(x) to be the 2N−dimensional lattice spanned

by the rows of the following matrix

MNTRU
h =



1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2
...

... . . . ...
...

... . . . ...

0 0 · · · 1 h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0

0 0 · · · 0 0 q · · · 0

...
... . . . ...

...
... . . . ...

0 0 · · · 0 0 0 · · · q



.

The matrix MNTRU
h can be decomposed into four N ×N blocks

1. The upper left block is the identity matrix, written as IN .

2. The lower left block is the zero matrix, written as 0N .

3. The lower right block is q times the identity, written as qIN .

4. The upper right block are the cyclic shifts of the coefficients of h(x), written as H .

Hence we can compactly write

MNTRU
h =

IN H

0N qIN

 .
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To accompany this setup, we will identify a pair of polynomials (a(x), b(x)) with the 2N -

dimensional vector

(a(x), b(x)) = (a0, . . . , aN−1, b0, . . . , bN−1),

where a(x) = a0 + a1x+ . . .+ aN−1x
N−1 and b(x) = b0 + b1x+ . . .+ bN−1x

N−1.

As in the original setup of NTRU, assume that h(x) is constructed using private polynomials

f(x) and g(x). We will show that the vector (f(x), g(x)) is in the NTRU lattice LNTRU
h .

Proposition 3.4.1. Assuming that f(x) ? h(x) ≡ g(x) mod q, let u(x) ∈ R be such that

f(x) ? h(x) = g(x) + qu(x).

Then

(f(x),−u(x)) ·MNTRU
h = (f, g).

Proof. Recall the block form

MNTRU
h =

I H

0 qI

 .
Clearly the first N entries of (f(x),−u(x))MNTRU

h will be f . For the next N entries, when

(f(x), g(x)) is multiplied by the column which starts with hk, the result is

hkf0 + hk−1f1 + · · ·+ hk+1fN−1 − quk.

This is the kth entry of f(x) ? h(x)− qu(x), which we also recognize as g(x). In this way, we have

described a linear combination of basis vectors of LNTRU
h which results in (f(x), g(x)).

The following result gives a summary of key information about the lattice formulation of an

NTRU cryptosystem.
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Proposition 3.4.2. Let (N, p, q, d) be parameters for an NTRU cryptosystem with the following

simplifying assumptions

p = 3, d ≈ N/3, and q ≈ 6pd ≈ 2pN.

Let LNTRU
h be the NTRU lattice associated to the private key (f, g). Then the following are true

a) det(LNTRU
h ) = qN .

b) ‖f, g‖ ≈
√

4d ≈
√

4N/3 ≈ 1.155
√
N .

c) The Gaussian heruistic predicts that the shortest nonzero vector in the NTRU lattice has

length

σ(LNTRU
h ) ≈

√
Nq/πe ≈ 0.838N.

Proof. a) This follows from the fact that MNTRU
h is upper triangular with N entries equal to q

and the rest equal to 1. By proposition 2.2.4, we have det(MNTRU
h ) = det(LNTRU

h ).

b) Both f and g have approximately d coefficients equal to 1, d coefficients equal to -1, and

the rest equal to zero, as they are ternary polynomials in the sets T (d + 1, d) and T (d, d)

respectively.

c) This follows immediately from the Gaussian heuristic where the dimension is 2N .

The important consequence of this result is that when the dimension N is large, it is highly

likely that the solution to the SVP for the lattice LNTRU
h are (f(x), g(x)) and its rotations. We saw

that a brute force attack already forces a large choice of N for a cryptosystem to be secure, so in

practice the SVP for the lattice associated to an NTRU cryptosystem is solved by (f(x), g(x)).

3.5 Solving the SVP for Lattices
Babai’s algorithm gave us a strategy for solving the SVP for a lattice L: find a sufficiently or-

thogonal basis using Hadamard’s ratio and search among the the basis vectors for a solution. Now
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that we have situated NTRU in terms of lattices, if an attacker can find a sufficiently orthogonal

basis for the NTRU lattice, they can carry out an effective attack. One of the fundamental algo-

rithms for finding such a basis is known as LLL Latice reduction, where LLL stands for the authors

Lenstra,Lenstra, and Lovász [11]. The algorithm is based off of the method of Gram-Schmidt for

finding orthogonal basis in vector spaces. Many improvements of this algorithm exist and we refer

the reader to [7] for additional details.
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Chapter 4

NTRU Variants

Since 1996, mathematicians and cryptographers have been excited to understand the ideas in

NTRU. One aspect of this understanding is accomplished by publishing a great breadth of variants

on the scheme. This section seeks to give a condensed survey of some of the most interesting and

important NTRU variants that have arised over the past few decades.

4.1 CTRU
Authors Gaborit, Ohler, and Sole published one of the earlier generalizations of NTRU in

2002, replacing the ring of integers Z with the ring of polynomials in one variable over a finite

field F2[T ] [26]. This main advantage of this approach is avoiding attacks based on the LLL

algorithm and the Chinese remainder theorem. While CTRU is an important piece of progress in

the study of NTRU-like cryptosystems, unfortunately in avoiding the classic attacks on NTRU,

this cryptosystem is highly vulnerable to more elementary attacks based on linear algebra, such as

one utilizing the Popov normal form. This cryptosystem also provides no speed advantages over

NTRU.

4.2 MaTRU and NNRU
In 2005, Coglianse and Goi suggested MaTRU, a variant of NTRU, with the goal of improving

the performance of the algorithm [4]. Here, the algebra of the system is based on k × k matrices

with entries in the ring R = Z[X]/(Xn − 1). MaTRU shares the same sort of vulnerabilities

as NTRU, namely the brute force and lattice-based attacks. When nk2 = N , one can compare

MaTRU to NTRU directly, and in this case MaTRU is k times faster in speed.

A few years later in 2009, Nitin Vats would improve on this cryptosystem with NNRU [27].

This crptosystem uses the same algebraic structure as MaTRU, however it changes the decryption

to be non-commutative as well, as it is only the encryption of MaTRU which is non-commutative.
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This change, among other improvements, makes NNRU not only more resilient to lattice-based

attacks, but also makes it significantly faster than NTRU.

4.3 Matrix NTRU
Not to be confused with MaTRU, Matrix NTRU was proposed by Nayak et al. in 2008 [14].

This cryptosystem utilizes matrices in the integers, rather than polynomials. It comes with ad-

vantages when sending large messages, as well as the benefits of security that come with a non-

commutative underlying algebraic structure. In particular, some lattice based attacks cannot be

leveraged against non-commutative systems. However, this system is vulnerable to a reaction at-

tack, where an attack can gain information about the private key by sending an purposefully altered

ciphertext.

We will see later in the discussion that this cryptosystem plays a key role in a unique attack on

GR-NTRU based cryptosystems.

4.4 QTRU
Malekian et al. presented a probabalistic and multi-dimensional version of NTRU utilizing

quaternion algebras [2]. Similar to MaTRU, the non-commutative nature of this cryptosystem

means that lattice attacks such as that of Coppersmith and Shamir do not work against it. Addi-

tionally, the more complicated multiplication of the quaternions causes other lattice attacks to work

much more slowly. Unfortunately, this also applies to the speed of encrytion as well, so QTRU

operates four times slower than NTRU under the same parameters.

4.5 ETRU
In 2009, an NTRU-like cryptosystem utilizing the ring of integers for a number field was intro-

duced by Nevins et al. as ETRU [9]. This cryptosystem uses the Eisenstein integers Z[ω] in place

of the integers. The Eisenstein integers are still an Euclidean domain, allowing for the formula-

tion of geometric attacks analogous to the SVP and CVP. It is slightly faster than NTRU, and has
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smaller key sizes for the same or better level of security. ETRU is vulnerable to the usual lattice

attacks.

4.6 OTRU
The first non-associative approach to an NTRU variant, OTRU, was proposed by Malekian and

Zakerolhosseini in 2010 [13]. This high speed, probablistic, and multi-dimensional cryptosystem

is based on the octonion algebra structure. Its standout feature is the ability to ecrypt eight data

vectors at each encryption step. It shares the same lattice attack vulnerabilities as NTRU, however,

under equal sizes of public and private keys as well as message length, the associated lattice to a

OTRU system is eight times larger than NTRU - increasing its security significantly.

4.7 ILTRU
Motivated by ETRU, Atani proposed ILTRU in 2015 [10]. This cryptosystem sought to gen-

eralize the success of ETRU by examing NTRU-like systems that use the algebraic structure of

R = Z[ω]/Φ with Φ = xn +xn−1 + . . .+x+ 1 where n+ 1 is prime so that Φ is an irreducible cy-

clotomic polynomial. This ring relates to a variant of the ring learning with errors problem where

one can show that ILTRU is CPA-secure. This is a kind of provable security as opposed to the

typically heuristic security available for NTRU and other variants.

4.8 Summary
The above collection of variants demonstrates the capacity for many algebraic structures in

NTRU-like cryptosystems. Aside from providing alternatives with improved security, as in the

case of OTRU, or improved speed, as in the case of MaTRU, these variants also give insight

into the security of other cryptosystems. However, when it comes to practical computer security,

having one very well-studied cryptosystem is much more valuable than having many less-studied

cryptosystems. For this reason, it is valuable to find ways to unify the many cryptosystems we

have described. The GR-NTRU cryptosystem offers a generalization of NTRU and many of its
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variants. In essence, GR-NTRU provides the framework to form a cryptosystem out of any group

ring over the integers. We will see that many NTRU-like cryptosystems can be realized through

GR-NTRU for a particular choice of group. From this perspective, analysis on GR-NTRU carries

over to many other cryptosystems. In particular, we will describe an attack on GR-NTRU which

has the potential to reduce the computational complexity of lattice-based attacks.
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Chapter 5

GR-NTRU

In this chapter, we describe the design of the GR-NTRU cryptosystem and look at a special

kind of attack carried out via the Matrix NTRU cryptosystem. We also examine which of the

variants we discussed can be formulated in the context of GR-NTRU.

In 2015, authors Yasuda, Dahan, and Sakurai published Characterizing NTRU-Variants Using

Group Ring and Evaluating their Lattice Security, where the GR-NTRU cryptosystem is estab-

lished and analyzed [25]. The key insight of the GR-NTRU cryptosystem is recognizing that the

underlying structure of the NTRU cryptosystem is a group ring, and that for each choice of group

one can obtain an analogue of NTRU. For example, the N th degree truncated polyhnomial ring

utilized in NTRU is isomorphic to the group ring formed by choosing G = CN , the cyclic group

of order N . We will see that the encryption and decryption processes of NTRU do not need the

specific choice of CN to be carried out.

The value of this perspective is that many of the NTRU variants that have been investigated over

the past couple of decades can be realized as a GR-NTRU cryptosystem for a particular choice of

group. When we allow for twisted group rings, we can describe even more cryptosystems under the

GR-NTRU paradigm. This allows us to translate results concerning the GR-NTRU cryptosystem

to many other proposed systems with relative ease. Moreover, group rings are intimately tied to

the theory of representations, which provides a rich framework for analyzing the security of group

ring compatible cryptosystems.
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Name Algebraic Structure GR-NTRU compatibility
NTRU Z[x]/(xN − 1) GR
CTRU F2[t][x]/(xN − 1) -
QTRU Quaternion algebras TGR
ETRU Ring of Eisenstein integers Z[ω] GR*
OTRU Octonion algebra
ILTRU Ideal lattices
NTWO Z[x, y]/(xN ,−1, yN − 1) GR

Non-commutative NTRU Z[Dn][x]/(xN − 1) GR

Table 5.1: Summary of NTRU variants.

The labels for GR-NTRU compatibility are as follows: GR indicates that the system can be

realized via GR-NTRU, TGR indicates that the system can be realized via GR-NTRU using a

twisted group ring, GR* indicates that the system can be realized as a subring of a group ring, and

the label - indicates that the system cannot be realized in GR-NTRU.
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5.1 Set up
Given a finite group G of size N , we define the subsets M and L(d1, d2) of the group ring

Z[G]. The elements of the setMp are the possible messages we can encrypt. We refer toM as the

space of messsages and define it as

Mp =

{
m =

∑
g∈G

ag · g ∈ Z/pZ[G] | − p

2
< ag ≤

p

2
, ∀g ∈ G

}
.

These are the elements of Z/pZ[G] with coefficients centered around 0. For positive integers d1,

d2,

L(d1, d2) =

f =
∑
g∈G

ag · g ∈ Z/pZ[G] |

f has d1 coefficients equal to 1,

f has d2 coefficients equal to -1,

the rest are 0.

 .

It is useful to view this set as a generalization of the ternary polynomials for convolution polyno-

mial rings.

5.2 GR-NTRU Cryptosystem
A GR-NTRU cryptosystem involes the following parameters: a finite group G, two primes p

and q, positive integers d1, d2, d3, an element f ∈ L(d1, d1−1) such that f is a unit when considered

as an element of Z/pZ[G] and as an element of Z/qZ[G], and an element g ∈ L(d2, d2). We can

refer to such a system as a tuple of these parameters: (G, p, q, f, g). This information determines

all of the other relevant particulars of a GR-NTRU cryptosystem, such as the public key and private

key, aside from the random choice of r ∈ L(d3, d3).

Key Creation

• Choose f ∈ L(d1, d1 − 1), g ∈ L(d2, d2) such that there exists fq, fp ∈ Z[G] satisfying

f ? fq ≡ 1 mod q and f · fp ≡ 1 mod p.

• Compute h = fq · g mod q.
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• The Public Key is the tuple (h, p, q).

• The Private Key is the pair (f, fp).

Encryption

Choose a plaintext m ∈Mp for encryption. Next choose a random r ∈ L(d3, d3). As before, r

plays the important role of involving the multiplication operation of the group ring in the encryp-

tion, distinguishing the cryptosystem from group-based cryptosystems. Compute the ciphertext

c ≡ ph · r +m mod q.

Decryption

Given a ciphertext c, we first compute

a ≡ f · c mod q.

Next we shift the coefficients of a modulo q so that they lie in the interval (−q/2, q/2). Then the

plaintext m can be recovered by computing fp ? a mod p.

Example 5.2.1. Consider the group ring Z[C5] whereC5 is the cyclic group of size 5 with generator

λ. Set p = 3 and q = 73. Also set d1 = 3, d2 = d3 = 2. We will carry out an example of the

GR-NTRU Cryptosystem using this group ring with the help of Alice and Bob.

First Alice chooses

f = λ+ λ1 + λ2 − λ9 − λ10 ∈ L(3, 2),

and

g = λ3 + λ5 − λ6 − λ8 ∈ L(2, 2).

The element f in invertible modulo p = 3 and q = 73 with inverses

fp = λ0 + 2λ1 + λ2 + λ4 + 2λ5 + 2λ9 + λ10,
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and

fq = 10λ0 + 22λ1 + 19λ2 + 32λ3 + 19λ4 + 54λ5 + 16λ6 + 16λ7 + 13λ9 + 19λ10.

Alice computes

h ≡ f ? g mod 73 ≡ 72λ1 + 72λ2 + λ4 + 3λ5 + λ6 + λ7 + 71λ8 + 72λ9 + 72λ10 mod 73,

and posts (h, p, q) as the public key.

Now Bob wishes to securely send the plaintext

m = λ0 + λ2 − λ4 − λ8 + λ9.

Bob randomly chooses r,

r = −λ1 + λ3 − λ7 + λ10 ∈ L(2, 2),

then computes the ciphertext

c ≡ ph · r +m mod q = 63 + 58λ1 + 69λ2 + 3λ3 + 13λ4 + 70λ6 + 67λ7 + 7λ8 + 6λ10 mod 73.

Bob sends the ciphertext to Alice, who decrypts c using the private key.

a ≡ −4 +−3λ1 + 3λ2 +−2λ3 + 3λ4 +−2λ5 + 5λ8 + λ9 +−2λ10 mod 73.

Then, adjusting the coefficients to lie in the appropriate range, Alice finds

a ≡ −4 +−3λ1 + 3λ2 +−2λ3 + 3λ4 +−2λ5 + 5λ8 + λ9 +−2λ10 mod 73.
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Finally Alice decrypts using,

fp · a ≡ λ0 + λ2 − λ4 − λ8 + λ9 mod 3,

which matches the original message m Bob intended to send.

5.3 Attacks

Lattice Attacks

An important quality of GR-NTRU is that the lattice formulation of NTRU generalizes as

well. Given a group G of order N and a public key h = (hg1 , . . . , hgN ) associated to some Z[G]

cryptosystem (G, p, q, f, g), we can formulate the matrix

M(h) =

IN C(h)

0N qIN


where we define C(h)3 by

C(h) =



h1 hg−1
1 g2

· · · hg−1
1 gN

hg−1
2 g1

h1 · · · hg−1
2 gN

...
... . . . ...

hg−1
N g1

hg−1
N g2

· · · h1


.

As before, the lattice L(h) generated by the rows of M(h) contains the vector (f, g) ∈ Z2n, and

this vector can be found by solving the SVP for L(h). Thus the lattice-based attacks described for

NTRU may also be levied against a generic GR-NTRU cryptosystem.

3This is a kind of circulent matrix.
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Matrix NTRU Attack

To further analyze the security of GR-NTRU cryptosystems, we will expand on the NTRU-like

cryptosystem called Matrix NTRU (M-NTRU), which makes use of matrix rings. We then show

that GR-NTRU cryptosystems may be reduced to a series of smaller M-NTRU cryptosystems. This

decomposition has the potential to drastically reduce the dimensionality involved in attacking GR-

NTRU. Essentially, an attack carried out on each of the lower-dimensional cryptosystems can be

lifted to an attack on the whole cryptosystem. The computational complexity of attacks on NTRU-

like cryptosystems are typically polynomial functions of dimension N , which in the case of GR-

NTRU is the size of the group G. Understanding how M-NTRU can break down dimensionality is

key to controlling the lower bound of computational intensity.

What follows is an outline of how this works:

• Find an injective ring homomorphism

τ : Z[G]→Mn1(Z)
⊕

Mn2(Z)
⊕
· · ·
⊕

Mnk(Z),

• Solve the smaller lattice problem for each 1, . . . , k by passing through τ .

• Once the smaller problems are all solved, pull everything back through τ to get a solution to

the original cryptosystem.

We will see that the choice of group G greatly impacts the shape of possible injections τ , namely

the sizes of the ni. This amounts to studying the representations of the group G, which we will

carry out for a number of examples in the next chapter.

Example 5.3.1. To further understand how this impacts security, consider the situation where

G = C10. We have the existence of an embedding,

τ : Z[G]→M1(Z)
⊕

M1(Z)
⊕

M4(Z)
⊕

M4(Z).
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As a simplification, we will assume that the LLL algorithm for solving SVP in a lattice of size N

is O(N2). Then if one were to use LLL to crack a GR-NTRU cryptosystem built with G directly,

one expects it to take c · 202 operations to carry this out, for some positive constant c. Here the 20

comes from 2 times the size of the group G. However, if one first passes through to the smaller

matrix rings using τ we see that the small problems in each would take c · 22, c · 22, c · 82, and c · 82

respectively, for a total of c · 136 operations, less than half of the computations needed before the

decomposition.

5.4 Matrix NTRU
Let R = Mn(Z). We define the following subsets of Zn similar to those defined in the GR-

NTRU cryptosystem. For a chosen positive integer p, defineMp by

Mp =
{
M = [mi,j] ∈Mn(Z/pZ) | − p

2
< mi,j ≤

p

2
,∀ 1 ≤ i, j ≤ n

}
.

For positive integers d1, d2 we also define

D(d1, d2) =

A = (aij) ∈ R |

Each row of A has d1 coefficients equal 1

Each row of A has d2 coefficients equal − 1

the rest are 0.

 .

Key Creation

• Choose positive integers d1, d2, d3.

• Choose F ∈ D(d1, d1 − 1), G ∈ D(d2, d2) such that there exists Fq, Fp ∈ R satisfying

F · Fq = 1 mod q and F · Fp = 1 mod p.

• Compute H = Fq ·G mod q.

• The Public Key is the matrix H .
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• The Private Key is the pair (F, Fp).

Encryption

To encrypt, first a message M is selected from the setMp. Then a random R ∈ D(d3, d3) is

also chosen, and the cipher text is computed as

C ≡ pH ·R +M mod q.

Decryption

To decrypt the ciphertext c, first compute

A ≡ F ∗ C mod q.

Next we adjust the coefficients of A so that they lie in the interval (−q/2, q/2]. The original

message M is recovered by computing

M ≡ Fp ∗ A mod p.

5.5 Lattice-Based Attack on M-NTRU
The key fact concerning attacks on M-NTRU is that the usual lattice attacks still apply. In A

General NTRU-Like Framework for Constructing Lattice-Based Public-Key Cryptosystems [16],

the authors provide a general framework for NTRU-like cryptosystems that describes a generic

procedure for situating NTRU-like cryptosystems in the context of lattices. Summarizing for the

case of M-NTRU, we consider the matrix

B =

 In 0n

HT q · In

 .
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By the Gaussian Heuristic, it follows that solving the SVP for B when n is large will recover F

and G with high likelihood. The presence of lattice-based attacks for M-NTRU will be the basis

for the general attack we give for GR-NTRU.

5.6 Attack on GR-NTRU using M-NTRU
Previously, we described an attack of GR-NTRU which translates the structure to a 2 · |G|-

dimensional lattice, and solves either the SVP or CVP for that lattice. This section describes a

generalization of this lattice attack on GR-NTRU which utilizes M-NTRU. In essence, we will

show how to reduce a GR-NTRU cryptosystem to a direct product of M-NTRU cryptosystem.

Let G = (G, p, q, f, g) be a GR-NTRU cryptosystem, with h = fq · g mod q where fq · f =

1 mod q. Given an embedding

τ : Z[G] ↪→Mn1(Z)⊕Mn2(Z)⊕ · · · ⊕Mnk(Z),

the cryptosystem G corresponds to k M-NTRU cryptosystems Mi over Mni(Z) as follows. For

1 ≤ k ≤ l, define Fi, Hi ∈Mni(Z) to be the images of f and h under the ith projection map for τ :

Fi = τi(f) and Hi = τi(h),

and let Fi and Hi be the secret and public key, respectively, for the M-NTRU cryptosystem Mi.

Since τ is injective, we may recover F and H from the collections {Fi} and {Hi}.

Furthermore, let m ∈ Mp be a message and let c be the corresponding ciphertext for the

G cryptosystem. For 1 ≤ i ≤ k, let Mi = τi(m) ∈ Mni(Z) and let Ci = τi(c) ∈ Mni(Z),

respectively. In this way, Mi can be interpreted as a message for the cryptosystem Mi, and Ci can

be interpreted as the corresponding ciphertext.

In summary, for each 1 ≤ i ≤ k we have a dictionary:
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Ring Z[G] τ(Z[G]) ⊂
⊕

Mni(Z)
Private Key f {Fi}ki=1

Public Key h {Hi}ki=1

Message m {Mi}ki=1

Ciphertext c {Ci}ki=1

Table 5.2: Dictionary of cryptosystem objects between GR-NTRU and a product of M-NTRU systems.

Given a GR-NTRU cryptosystem G, the strategy of attack works like this:

1. Find an injective ring homomorphism

τ : Z[G]→Mn1(Z)
⊕

Mn2(Z)
⊕
· · ·
⊕

Mnk(Z).

2. Create the corresponding M-NTRU cryptosystems Mi for each ≤ i ≤ k. Use lattice attacks

on each of these cryptosystems to obtain the private keys {Fi}.

3. Using the correspondence between the collection {Mi} and G, obtain the private key f for

G from the collection {Fi}.

The lattice attack for G takes O(N2) computations, where N = |G|. However, the attack

described above takes O(n2
l ) computations, where nl = max{n1, . . . , nk}. So a homomorphism τ

which minimizes nl is the best choice for an attacker.
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Chapter 6

GR-NTRU for Certain Groups

In the GR-NTRU paper, the security of GR-NTRU for four classes of groups are analyzed via

the M-NTRU attack described above. We summarize the results for these groups and present an

example of our own. First, we detail the process taken to analyze these groups.

The general approach taken to find an injective ring homomorphism τ for the M-NTRU attack

relies primarily on group representation theory. Recall that if σ : G 7→ GL(n,K) is a group

representation of G over the field K, then σ extends in a natural way to a homomorphism of group

rings σ̄ : K[G] → Mn(K). Vice-a-versa, a homormorphism of group rings may be restricted to

give back a group representation.

Given a group G, suppose that we have a (not necessarily injective) homomorphism

τ : Z[G]→Mn1(Z)
⊕

Mn2(Z)
⊕
· · ·
⊕

Mnk(Z). (6.1)

By scalar extension with ⊗ZC, we may extend τ to a map

τ̄ : C[G]→Mn1(C)
⊕

Mn2(C)
⊕
· · ·
⊕

Mnk(C). (6.2)

Via diagonalization, we may write this as a group ring homomorphism

τ̄ : C[G]→Mn(C)

where n =
∑k

i=1 ni. By the correspondence given in proposition 2.4.2, this map provides a group

representation σ : G → Cn. Thus, to find the desired map τ , it suffices to search among the

representations of G. This would be a difficult task in general if not for the following additional

result.
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Proposition 6.0.1. The homomorphism τ given in 6.1 is injective if and only if the group represen-

tation afforded by τ̄ in 6.2 includes all irreducible representations of G as subrepresentations.

This fact is very important as it further restricts our attention to a very specific kind of repre-

sentation, those that contain all irreducible representations as subrepresentations.

An attacker seeks to find a map τ such that the maximum of the ni is as small as possible so

that the computation time is minimized. Therefore, to find a suitable τ for an attack, one looks

for an injective τ as in 6.1 where max{ni} is minimized. By the previous string of ideas, we may

obtain a τ by first finding all irreducible representations of the relevant group G and then building

a representation out of all the irreducbible representations.

We end by summarizing the results of this approach as analyzed by the authors in the GR-

NTRU paper, and afterwards we explore an example in detail for S3.

Group Order maxni⊕
Cni: Product of cyclic groups n1 × · · · × nk φ(n1)× . . .× φ(nk)

Dn: Dihedral group 2n n
Fp: Frobenius group p(p− 1) p

Sn: Symmetric group on n letters n! Cannot be estimated in general

Table 6.1: Summary of M-NTRU security analysis for various groups

The φ in the description of the product of cyclic groups is Euler’s totient function. In the case

of the symmetric group, the dimension of the lattice attack cannot be given explicitly in terms of

n, so it must be investigated for a specific choice of n. In what follows, we look at how this works

for S3.

6.1 GR-NTRU for S3

Let G = S3 the symmetric group on 3 letters. To analyze the GR-NTRU cryptosystem for this

group, we first describe key pieces of the representation theory for S3 and use these to describe an

injective τ for use by the M-NTRU attack.
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To efficiently describe the desired decomposition of Z[S3] into matrix rings, we rely on some

of the powerful theorems of representation theory.

Theorem 6.1.1 (Maschke). Given a finite group G, the group ring Q[G] is semi-simple.

Theorem 6.1.2 (Wedderburn-Artin). If A is a semi-simple algebra over a field K, then A is

uniquely decomposed into a direct sum of matrix rings each over a skew field:

A '
k⊕
i=1

Mni(Di).

Thus we have a decomposition of Q[G] into matrix rings, however we can say even more in the

case of K = C.

Theorem 6.1.3.

C[G] '
⊕
σ∈Ĝ

Mnσ(C).

Here, Ĝ is the set of isomorphism classes of irreducible representations of G, and nσ is the degree

of an irreducible representations σ.

In the case of Sn, passing from C to Q does not change the decomposition given above, so we

have

Q[G] '
⊕
σ∈Ĝ

Mnσ(Q).

Thus to obtain this decomposition for S3 we must describe the irreducible representations of

S3. Recall proposition 2.4.1 which states that the number of distinct irreducible representations

for a group G is equal to the number of conjugacy classes of G. In general, there is no canonical

correspondence between these two objects. However, in the case of the symmetric group the theory

of Young tableaux gives a very elegant mapping between the two in terms of partitions of n. We

do not exposit the details here, but the reader may refer to Harris & Fulton chapter 4 [6] for how

this works.
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For each partition λ of the integer 3, we have a corresponding irreducible representation σλ.

The way σλ is constructed is not unique, however the degree of the representation is invariant of

the construction. The degree can be calculated using the hook formula for Young tableaux

deg σλ =
n!

Π(λ)

where Π(λ) gives the product of hook lengths for the tableaux for λ. The partition (3) corresponds

to a representation of size 3!
6

= 1, the partition (2, 1) corresponds to a representation of size 3!
3

= 2,

and the partition (1, 1, 1) corresponds to a representation of size 3!
6

= 1. Therefore,

Q[S3] 'M1(Q)⊕M1(Q)⊕M2(Q).

So in an M-NTRU attack on an S3-based group ring cryptosystem, the maximal dimension of

a lattice problem an attacker must solve is 4. Without the decomposition the size of the lattice

problem would be 2 · |S3| = 12. For larger n, we can see greater reductions in dimension. What

follows is a reproduction of a table of calculations from the GR-NTRU paper.

n min deg(σλ) min deg(σλ)/n!

8 90 1/448
9 216 1/1680

10 768 1/4725
11 2310 1/17290
...

...
...

19 64664600 1/1881169920
20 249420600 1/975421440
21 1118939184 1/204838502400

Table 6.2: List of M-NTRU attack dimensions for various Sn.
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Chapter 7

Closing Remarks

We started by establishing the mathematics to understand the NTRU cryptosystem. The algebra

of convolution polynomials enjoys a rich relationship to integer lattices, which lead to numerous

ways one can analyze the security of NTRU. We saw that NTRU lends itself to a vast algebraic

generalization as described by GR-NTRU. A closer look at GR-NTRU showed us that many alge-

braic structures we encounter in NTRU-like cryptosystems can be classified as group rings. We

then described an improvement on the lattice-based attacks for GR-NTRU using M-NTRU and

representation theory. Looking at a collection of examples, we saw explicitly how a matrix ring

decomposition of the group ring Z[G] can reduce the computational complexity of lattice-based

attacks.

The new attack on NTRU and its variants demonstrates that group rings and representation the-

ory are an important perspective for further analyzing these cryptosystems. Interesting questions

are left unanswered: which groups G provide practical cryptosystems through GR-NTRU, what

more can GR-NTRU tell us about NTRU-like cryptosystems that already exist, and can represen-

tation theory be further leveraged for a deeper understanding of NTRU-like cryptosystems?
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